Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762124

ABSTRACT

Chronic pain is a significant health problem worldwide. Recent evidence has suggested that the ventral hippocampus is dysfunctional in humans and rodents, with decreased neuronal excitability and connectivity with other brain regions, parallel pain chronicity, and persistent nociceptive hypersensitivity. But the molecular mechanisms underlying hippocampal modulation of pain remain poorly elucidated. In this study, we used ex vivo whole-cell patch-clamp recording, immunofluorescence staining, and behavioral tests to examine whether hyperpolarization-activated cyclic nucleotide-gated channels 2 (HCN2) in the ventral hippocampal CA1 (vCA1) were involved in regulating nociceptive perception and CFA-induced inflammatory pain in mice. Reduced sag potential and firing rate of action potentials were observed in vCA1 pyramidal neurons from CFA-injected mice. Moreover, the expression of HCN2, but not HCN1, in vCA1 decreased in mice injected with CFA. HCN2 knockdown in vCA1 pyramidal neurons induced thermal hypersensitivity, whereas overexpression of HCN2 alleviated thermal hyperalgesia induced by intraplantar injection of CFA in mice. Our findings suggest that HCN2 in the vCA1 plays an active role in pain modulation and could be a promising target for the treatment of chronic pain.


Subject(s)
Chronic Pain , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Potassium Channels , Animals , Mice , Action Potentials , Cyclic Nucleotide-Gated Cation Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Nociception , Potassium Channels/genetics , Potassium Channels/metabolism , CA1 Region, Hippocampal/metabolism
2.
Cell Rep ; 42(1): 112017, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36662622

ABSTRACT

Chronic pain is one of the most significant medical problems throughout the world. Recent evidence has confirmed the hippocampus as an active modulator of pain chronicity, but the underlying mechanisms remain unclear. Using in vivo electrophysiology, we identify a neural ensemble in the ventral hippocampal CA1 (vCA1) that shows inhibitory responses to noxious but not innocuous stimuli. Following peripheral inflammation, this ensemble becomes responsive to innocuous stimuli, representing hypersensitivity. Mimicking the inhibition of vCA1 neurons using chemogenetics induces chronic pain-like behaviors in naive mice, whereas activating vCA1 neurons in mice with peripheral inflammation results in a reduction of pain-related behaviors. Pathway-specific manipulation of vCA1 projections to basolateral amygdala (BLA) and infralimbic cortex (IL) shows that these pathways are differentially involved in pain modulation at different temporal stages of chronic inflammatory pain. These results confirm a crucial role of the vCA1 and its circuits in modulating the development of chronic pain.


Subject(s)
CA1 Region, Hippocampal , Chronic Pain , Mice , Animals , CA1 Region, Hippocampal/physiology , Chronic Pain/metabolism , Hippocampus/metabolism , Neurons/metabolism , Inflammation/metabolism , Neural Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...