Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Nano ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001855

ABSTRACT

Solution-based processes have received considerable attention in the fabrication of electronics and sensors owing to their merits of being low-cost, vacuum-free, and simple in equipment. However, the current solution-based processes either lack patterning capability or have low resolution (tens of micrometers) and low pattern fidelity in terms of line edge roughness (LER, several micrometers). Here, we present a surface energy-directed assembly (SEDA) process to fabricate metal oxide patterns with up to 2 orders of magnitude improvement in resolution (800 nm) and LER (16 nm). Experiment results show that high pattern fidelity can be achieved only at low relative humidities of below 30%. The reason for this phenomenon lies in negligible water condensation on the solution droplet. Employing the SEDA process, all-solution-processed metal oxide thin film transistors (TFTs) are fabricated by using indium oxide as channel layers, indium tin oxide as source/drain electrodes and gate electrodes, and aluminum oxide as gate dielectrics. TFT-based logic gate circuits, including NOT, NOR, NAND, and AND are fabricated as well, demonstrating the applicability of the SEDA process in fabricating large area functional electronics.

2.
Adv Sci (Weinh) ; 10(34): e2304990, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37818769

ABSTRACT

Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh-based TCEs are either costly or having limited resolution and throughput. Here, a two-step surface energy-directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two-step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three-phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non-pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two-step SEDA process rather than a one-step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two-step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two-step SEDA process for the fabrication of TCEs for optoelectronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL