Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
2.
Front Cell Infect Microbiol ; 14: 1368165, 2024.
Article in English | MEDLINE | ID: mdl-38915923

ABSTRACT

Background: Mucormycosis is an uncommon invasive fungal infection that has a high mortality rate in patients with severe underlying diseases, which leads to immunosuppression. Due to its rarity, determining the incidence and optimal treatment methods for mucormycosis in children is challenging. Metagenomic next-generation sequencing (mNGS) is a rapid, precise and sensitive method for pathogen detection, which helps in the early diagnosis and intervention of mucormycosis in children. In order to increase pediatricians' understanding of this disease, we conducted a study on the clinical features of mucormycosis in children and assessed the role of mNGS in its diagnosis. Methods: We retrospectively summarized the clinical data of 14 children with mucormycosis treated at the First Affiliated Hospital of Zhengzhou University from January 2020 to September 2023. Results: Of the 14 cases, 11 case of mucormycosis were classified as probable, and 3 cases were proven as mucormycosis. Most children (85.71%) had high-risk factors for mucormycosis. All 14 children had lung involvement, with 5 cases of extrapulmonary dissemination. Among the 14 cases, 4 cases underwent histopathological examination of mediastinum, lung tissue or kidney tissue, in which fungal pathogens were identified in 3 patients. Fungal hyphae was identified in 3 cases of mucormycosis, but only 1 case yielded a positive culture result. All patients underwent mNGS testing with samples from blood (8/14), bronchoalveolar lavage fluid (6/14), and tissue (1/14). mNGS detected fungi in all cases: 7 cases had Rhizomucor pusillus, 4 cases had Rhizopus oryzae, 3 cases had Rhizopus microsporus, 1 case had Lichtheimia ramosa, and 1 case had Rhizomucor miehei. Coinfections were found with Aspergillus in 3 cases, bacteria in 3 cases, and viruses in 5 cases. Conclusion: Children with mucormycosis commonly exhibit non-specific symptoms like fever and cough during the initial stages. Early diagnosis based on clinical symptoms and imaging is crucial in children suspected of having mucormycosis. mNGS, as a supplementary diagnostic method, offers greater sensitivity and shorter detection time compared to traditional mucormycosis culture or histopathological testing. Additionally, mNGS enables simultaneous detection of bacteria and viruses, facilitating timely and appropriate administration of antibiotics and thereby enhancing patient outcomes.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenomics , Mucormycosis , Humans , Mucormycosis/diagnosis , Mucormycosis/microbiology , High-Throughput Nucleotide Sequencing/methods , Male , Female , Child , Child, Preschool , Metagenomics/methods , Retrospective Studies , Infant , Adolescent , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/microbiology , China
3.
Cell Prolif ; : e13691, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886174

ABSTRACT

The regulatory mechanisms involved in embryonic development are complex and yet remain unclear. SCP4 represents a novel nucleus-resident phosphatase identified in our previous study. The primary aim of this study was to elucidate the function of SCP4 in the progress of cartilage development and endochondral osteogenesis. SCP4-/- and SCP4Col2ER mice were constructed to assess differences in bone formation using whole skeleton staining. ABH/OG staining was used to compare chondrocyte differentiation and cartilage development. Relevant biological functions were analysed using RNA-sequencing and GO enrichment, further validated by immunohistochemical staining, Co-IP and Western Blot. Global SCP4 knockout led to abnormal embryonic development in SCP4-/- mice, along with delayed endochondral osteogenesis. In parallel, chondrocyte-specific removal of SCP4 yielded more severe embryonic deformities in SCP4Col2ER mice, including limb shortening, reduced chondrocyte number in the growth plate, disorganisation and cell enlargement. Moreover, RNA-sequencing analysis showed an association between SCP4 and chondrocyte apoptosis. Notably, Tunnel-positive cells were indeed increased in the growth plates of SCP4Col2ER mice. The deficiency of SCP4 up-regulated the expression levels of pro-apoptotic proteins both in vivo and in vitro. Additionally, phosphorylation of FoxO3a (pFoxO3a), a substrate of SCP4, was heightened in chondrocytes of SCP4Col2ER mice growth plate, and the direct interaction between SCP4 and pFoxO3a was further validated in chondrocytes. Our findings underscore the critical role of SCP4 in regulating cartilage development and endochondral osteogenesis during embryonic development partially via inhibition of chondrocytes apoptosis regulated by FoxO3a dephosphorylation.

4.
Elife ; 132024 May 31.
Article in English | MEDLINE | ID: mdl-38819423

ABSTRACT

Recurrent joint bleeding in hemophilia patients frequently causes hemophilic arthropathy (HA). Drastic degradation of cartilage is a major characteristic of HA, but its pathological mechanisms has not yet been clarified. In HA cartilages, we found server matrix degradation and increased expression of DNA methyltransferase proteins. We thus performed genome-wide DNA methylation analysis on human HA (N=5) and osteoarthritis (OA) (N=5) articular cartilages, and identified 1228 differentially methylated regions (DMRs) associated with HA. Functional enrichment analyses revealed the association between DMR genes (DMGs) and extracellular matrix (ECM) organization. Among these DMGs, Tenascin XB (TNXB) expression was down-regulated in human and mouse HA cartilages. The loss of Tnxb in F8-/- mouse cartilage provided a disease-promoting role in HA by augmenting cartilage degeneration and subchondral bone loss. Tnxb knockdown also promoted chondrocyte apoptosis and inhibited phosphorylation of AKT. Importantly, AKT agonist showed chondroprotective effects following Tnxb knockdown. Together, our findings indicate that exposure of cartilage to blood leads to alterations in DNA methylation, which is functionally related to ECM homeostasis, and further demonstrate a critical role of TNXB in HA cartilage degeneration by activating AKT signaling. These mechanistic insights allow development of potentially new strategies for HA cartilage protection.


Subject(s)
Apoptosis , Chondrocytes , DNA Methylation , Hemophilia A , Proto-Oncogene Proteins c-akt , Signal Transduction , Tenascin , Animals , Chondrocytes/metabolism , Chondrocytes/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Humans , Mice , Hemophilia A/metabolism , Hemophilia A/genetics , Hemophilia A/complications , Tenascin/metabolism , Tenascin/genetics , Extracellular Matrix/metabolism , Male , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology
5.
J Cell Mol Med ; 28(9): e18319, 2024 May.
Article in English | MEDLINE | ID: mdl-38742846

ABSTRACT

Knee osteoarthritis (KOA), a major health and economic problem facing older adults worldwide, is a degenerative joint disease. Glycyrrhiza uralensis Fisch. (GC) plays an integral role in many classic Chinese medicine prescriptions for treating knee osteoarthritis. Still, the role of GC in treating KOA is unclear. To explore the pharmacological mechanism of GC against KOA, UPLC-Q-TOF/MS was conducted to detect the main compounds in GC. The therapeutic effect of GC on DMM-induced osteoarthritic mice was assessed by histomorphology, µCT, behavioural tests, and immunohistochemical staining. Network pharmacology and molecular docking were used to predict the potential targets of GC against KOA. The predicted results were verified by immunohistochemical staining Animal experiments showed that GC had a protective effect on DMM-induced KOA, mainly in the improvement of movement disorders, subchondral bone sclerosis and cartilage damage. A variety of flavonoids and triterpenoids were detected in GC via UPLC-Q-TOF/MS, such as Naringenin. Seven core targets (JUN, MAPK3, MAPK1, AKT1, TP53, RELA and STAT3) and three main pathways (IL-17, NF-κB and TNF signalling pathways) were discovered through network pharmacology analysis that closely related to inflammatory response. Interestingly, molecular docking results showed that the active ingredient Naringenin had a good binding effect on anti-inflammatory-related proteins. In the verification experiment, after the intervention of GC, the expression levels of pp65 and F4/80 inflammatory indicators in the knee joint of KOA model mice were significantly downregulated. GC could improve the inflammatory environment in DMM-induced osteoarthritic mice thus alleviating the physiological structure and dysfunction of the knee joint. GC might play an important role in the treatment of knee osteoarthritis.


Subject(s)
Glycyrrhiza uralensis , Molecular Docking Simulation , Network Pharmacology , Osteoarthritis, Knee , Animals , Glycyrrhiza uralensis/chemistry , Mice , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Male , Disease Models, Animal , Signal Transduction/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice, Inbred C57BL
6.
Life Sci ; 343: 122536, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38423170

ABSTRACT

AIMS: The main pathological features of osteoarthritis (OA) include the degeneration of articular cartilage and a decrease in matrix synthesis. Chondrocytes, which contribute to matrix synthesis, play a crucial role in the development of OA. Liquiritin, an effective ingredient extracted from Glycyrrhiza uralensis Fisch., has been used for over 1000 years to treat OA. This study aims to investigate the impact of liquiritin on OA and its underlying mechanism. MATERIALS AND METHODS: Gait and hot plate tests assessed mouse behavior, while Micro-CT and ABH/OG staining observed joint morphological changes. The TUNEL kit detected chondrocyte apoptosis. Western blot and immunofluorescence techniques determined the expression levels of cartilage metabolism markers COL2 and MMP13, as well as apoptosis markers caspase3, bcl2, P53, and PUMA. KEGG analysis and molecular docking technology were used to verify the relationship between liquiritin and P53. KEY FINDINGS: Liquiritin alleviated pain sensitivity and improved gait impairment in OA mice. Additionally, we found that liquiritin could increase COL2 levels and decrease MMP13 levels both in vivo and in vitro. Importantly, liquiritin reduced chondrocyte apoptosis induced by OA, through decreased expression of caspase3 expression and increased expression of bcl2 expression. Molecular docking revealed a strong binding affinity between liquiritin and P53. Both in vivo and in vitro studies demonstrated that liquiritin suppressed the expression of P53 and PUMA in cartilage. SIGNIFICANCE: This indicated that liquiritin may alleviate OA progression by inhibiting the P53/PUMA signaling pathway, suggesting that liquiritin is a potential strategy for the treatment of OA.


Subject(s)
Cartilage, Articular , Flavanones , Glucosides , Osteoarthritis , Animals , Mice , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Flavanones/pharmacology , Glucosides/pharmacology , Matrix Metalloproteinase 13/metabolism , Molecular Docking Simulation , Osteoarthritis/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
7.
Elife ; 122024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376133

ABSTRACT

Glucocorticoid-induced osteonecrosis of the femoral head (GONFH) is a common refractory joint disease characterized by bone damage and the collapse of femoral head structure. However, the exact pathological mechanisms of GONFH remain unknown. Here, we observed abnormal osteogenesis and adipogenesis associated with decreased ß-catenin in the necrotic femoral head of GONFH patients. In vivo and in vitro studies further revealed that glucocorticoid exposure disrupted osteogenic/adipogenic differentiation of bone marrow mesenchymal cells (BMSCs) by inhibiting ß-catenin signaling in glucocorticoid-induced GONFH rats. Col2+ lineage largely contributes to BMSCs and was found an osteogenic commitment in the femoral head through 9 mo of lineage trace. Specific deletion of ß-catenin gene (Ctnnb1) in Col2+ cells shifted their commitment from osteoblasts to adipocytes, leading to a full spectrum of disease phenotype of GONFH in adult mice. Overall, we uncover that ß-catenin inhibition disrupting the homeostasis of osteogenic/adipogenic differentiation contributes to the development of GONFH and identify an ideal genetic-modified mouse model of GONFH.


Subject(s)
Glucocorticoids , Mesenchymal Stem Cells , Osteonecrosis , beta Catenin , Animals , Humans , Mice , Rats , Adipogenesis/genetics , beta Catenin/genetics , Cell Differentiation , Femur Head/pathology , Glucocorticoids/adverse effects , Homeostasis , Osteogenesis/genetics , Osteonecrosis/pathology
8.
J Orthop Surg Res ; 18(1): 963, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098028

ABSTRACT

OBJECTIVE: To verify the clinical efficacy of Zhang's Xibi formula (ZSXBF) and explain the mechanism underlying its therapeutic effect. METHODS: Preliminary elucidation of the clinical efficacy of ZSXBF in treating KOA in self-control studies, exploration of its mechanism of action with network pharmacology methods, and validation in animal experiments. RESULTS: In clinical studies, ZSXBF administration effectively improved patient quality of life and reduce pain. Network pharmacology was used to explore the possible mechanisms underlying its treatment effect, and after verification in clinical experience and animal experiments, it was found that ZSXBF regulated the expression of immune-related proteins such as IL-17, ERK1, and TP53 in mouse knee joints. CONCLUSION: ZSXBF, which is a traditional Chinese medicine compound that is used to clear heat and detoxify, can effectively improve the clinical symptoms of KOA patients, and its underlying mechanism includes the regulation of human immune-related proteins.


Subject(s)
Drugs, Chinese Herbal , Osteoarthritis, Knee , Humans , Animals , Mice , Osteoarthritis, Knee/drug therapy , Quality of Life , Knee Joint , Hot Temperature , Medicine, Chinese Traditional
9.
Environ Health Perspect ; 131(10): 107002, 2023 10.
Article in English | MEDLINE | ID: mdl-37792558

ABSTRACT

BACKGROUND: Previous evidence has identified exposure to fine ambient particulate matter (PM2.5) as a leading risk factor for adverse health outcomes. However, to date, only a few studies have examined the potential association between long-term exposure to PM2.5 and bone homeostasis. OBJECTIVE: We sought to examine the relationship between long-term PM2.5 exposure and bone health and explore its potential mechanism. METHODS: This research included both observational and experimental studies. First, based on human data from UK Biobank, linear regression was used to explore the associations between long-term exposure to PM2.5 (i.e., annual average PM2.5 concentration for 2010) and bone mineral density [BMD; i.e., heel BMD (n=37,440) and femur neck and lumbar spine BMD (n=29,766)], which were measured during 2014-2020. For the experimental animal study, C57BL/6 male mice were assigned to ambient PM2.5 or filtered air for 6 months via a whole-body exposure system. Micro-computed tomography analyses were applied to measure BMD and bone microstructures. Biomarkers for bone turnover and inflammation were examined with histological staining, immunohistochemistry staining, and enzyme-linked immunosorbent assay. We also performed tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assay to determine the effect of PM2.5 exposure on osteoclast activity in vitro. In addition, the potential downstream regulators were assessed by real-time polymerase chain reaction and western blot. RESULTS: We observed that long-term exposure to PM2.5 was significantly associated with lower BMD at different anatomical sites, according to the analysis of UK Biobank data. In experimental study, mice exposed long-term to PM2.5 exhibited excessive osteoclastogenesis, dysregulated osteogenesis, higher tumor necrosis factor-alpha (TNF-α) expression, and shorter femur length than control mice, but they demonstrated no significant differences in femur structure or BMD. In vitro, cells stimulated with conditional medium of PM2.5-stimulated macrophages had aberrant osteoclastogenesis and differences in the protein/mRNA expression of members of the TNF-α/Traf6/c-Fos pathway, which could be partially rescued by TNF-α inhibition. DISCUSSION: Our prospective observational evidence suggested that long-term exposure to PM2.5 is associated with lower BMD and further experimental results demonstrated exposure to PM2.5 could disrupt bone homeostasis, which may be mediated by inflammation-induced osteoclastogenesis. https://doi.org/10.1289/EHP11646.


Subject(s)
Air Pollutants , Biological Specimen Banks , Animals , Humans , Male , Mice , Air Pollutants/toxicity , Air Pollutants/analysis , Homeostasis , Inflammation/chemically induced , Mice, Inbred C57BL , Particulate Matter/toxicity , Particulate Matter/analysis , United Kingdom , X-Ray Microtomography , Observational Studies as Topic
10.
Environ Sci Pollut Res Int ; 30(49): 108301-108318, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37749474

ABSTRACT

The construction of trade power and green low-carbon transformation are common high-quality development goals for countries worldwide. The depth of the environmental provisions contained in different countries' intercountry trade agreements and the implicit carbon data of intercountry trade are accurately measured based on the textual analysis of trade agreement rules, and it is empirically found that enhancing the depth of the environmental provisions contained in trade agreements can significantly reduce CO2 emissions embodied in international trade. The capacity of intercountry green technology cooperation to strengthen the internal environmental governance capacity of countries and to enhance carbon productivity is an important transmission mechanism. The effect of the environmental provisions in different types of trade agreements on reducing trade-implied carbon is obviously heterogeneous; the higher the level of correlation with carbon emissions is, the stronger the effect of trade agreement provisions, and that effect is more significant in developed countries and in the reduction of foreign carbon emissions that are embedded in export products. In this paper, the impact of the depth of the environmental provisions of trade agreements on trade-implied carbon under the same framework is directly studied, which not only advances the measurement of the depth of the environmental provisions of trade agreements and expands the research field on the scope of influence of existing trade agreements but also fully accounts for the role of the effectiveness of environmental provisions in different contexts and provides a theoretical basis for the optimization of future environmental provisions.


Subject(s)
Commerce , Internationality , Carbon Dioxide/analysis , Conservation of Natural Resources , Environmental Policy , Carbon/analysis , China , Economic Development
11.
PLoS One ; 18(8): e0290333, 2023.
Article in English | MEDLINE | ID: mdl-37651410

ABSTRACT

This paper constructs a theoretical model of biased production decisions due to the import of environmental intermediate goods. Additionally, it analyzes the influence of these imports on CO2 emissions based on the trade and CO2 emission data of Chinese prefecture-level cities from 2000 to 2016. Furthermore, it empirically explores how environmental intermediate imports affect CO2 emissions. The study found the following: first, the import of environmental intermediate goods can effectively reduce CO2 emissions; this conclusion still holds under robustness and endogeneity tests. Second, the carbon emission reduction effect related to the import of environmental intermediate goods is affected by differences in geographical location, environmental pollution, sustainable development ability and government efficiency. Third, the mechanism test found that the import of environmental intermediate goods exerts emission reduction effects through the green technological innovation and industrial structure upgrading mechanisms. The conclusions of the research in this article provide a reference for coordinating trade development and environmental protection.


Subject(s)
Carbon Dioxide , China , Cities , Empirical Research
12.
Apoptosis ; 28(9-10): 1332-1345, 2023 10.
Article in English | MEDLINE | ID: mdl-37306805

ABSTRACT

BACKGROUND: This study aimed to investigate the pathogenic factors of glucocorticoids (GCs)-induced osteonecrosis of the femoral head (GONFH) and its underlying pathogenesis in vivo and in vitro. METHODS: Radiographical (µCT) scanning, histopathological, immunohistochemical, reactive oxygen species (ROS) and tunel staining were conducted on GONFH patients and rats. ROS, tunel, flow cytometry, alkaline phosphatase, Oil red O staining, reverse transcription­quantitative PCR and western blotting were applied to elucidate the exact pathogenesis mechanism. RESULTS: Clinical and animal studies demonstrated increased levels of ROS, aggravated oxidative stress (OS) microenvironment, augmented apoptosis and imbalance in osteogenic/lipogenic in the GONFH group compared to the control group. The fate of mesenchymal stem cells (MSCs) directed by GCs is a crucial factor in determining GONFH. In vitro studies further revealed that GCs promote excessive ROS production through the expression of NOX family proteins, leading to a deterioration of the OS microenvironment in MSCs, ultimately resulting in apoptosis and imbalance in osteogenic/lipogenic differentiation. Furthermore, our results confirmed that the NOX inhibitor-diphenyleneiodonium chloride and the NF-κB inhibitor-BAY 11-7082 ameliorated apoptosis and osteogenic/lipogenic differentiation imbalance of MSCs induced by an excess of GCs. CONCLUSION: We demonstrated for the first time that the aggravation of the OS microenvironment in MSCs caused by high doses of GCs leading to apoptosis and differentiation imbalance is a crucial factor in the pathogenesis of GONFH, mediated through activating the NOX/ROS/NF-κB signaling pathway.


Subject(s)
Mesenchymal Stem Cells , NF-kappa B , Humans , Rats , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Glucocorticoids/adverse effects , Glucocorticoids/metabolism , Apoptosis , Signal Transduction
13.
PLoS One ; 18(6): e0286842, 2023.
Article in English | MEDLINE | ID: mdl-37289777

ABSTRACT

The fast growth in the installation of industrial robots has had a major impact on the comparative advantage of nations and the division of labor in global value chains in the era of smart manufacturing. Using various econometric models and panel data from 18 industries in 38 countries from 2000 to 2014, this paper empirically examines the impact of industrial robot applications on the status of countries in manufacturing global value chains and its mechanisms. The study demonstrates that industrial robot application can effectively improve the status of countries in manufacturing global value chains, and this improving effect is more obvious for developing countries and labor-intensive and technology-intensive industries. Mechanism testing shows that industrial robot application can effectively enhance the development level of highly skilled human capital and productive service industries, thereby improving the status of the manufacturing global value chain. This study provides a theoretical basis and policy reference for countries to enhance their status in the global value chain through industrial robot applications in the future.


Subject(s)
Robotics , Humans , Commerce , Industry , China
14.
Drug Des Devel Ther ; 17: 633-646, 2023.
Article in English | MEDLINE | ID: mdl-36875721

ABSTRACT

Background: Knee osteoarthritis (KOA) is the primary prevalent disabling joint disorder among osteoarthritis (OA), and there is no particularly effective treatment at the clinic. Traditional Chinese medicine (TCM) herbs, such as Eucommia ulmoides Oliv. and Glycyrrhiza uralensis Fisch. (E.G.) couplet medicines, have been reported to exhibit beneficial health effects on KOA, exact mechanism of E.G. nevertheless is not fully elucidated. Purpose: We assess the therapeutic effects of E.G. on KOA and explore its underlying molecular mechanism. Methods: UPLC-Q-TOF/MS technique was used to analyze the active chemical constituents of E.G. The destabilization of the medial meniscus model (DMM) was employed to evaluate the chondroprotective action of E.G. in KOA mice using histomorphometry, µCT, behavioral testing and immunohistochemical staining. Additionally, network pharmacology and molecular docking were used to predict potential targets for anti-KOA activities of E.G., which was further verified through in vitro experiments. Results: In vivo studies have shown that E.G. could significantly ameliorate DMM-induced KOA phenotypes including subchondral bone sclerosis, cartilage degradation, gait abnormality and thermal pain reaction sensibility. E.G. treatment could also promote extracellular matrix synthesis to protect articular chondrocytes, which was indicated by Col2 and Aggrecan expressions, as well as reducing matrix degradation by inhibiting MMP13 expression. Interestingly, network pharmacologic analysis showed that PPARG might be a therapeutic center. Further study proved that E.G.-containing serum (EGS) could up-regulate PPARG mRNA level in IL-1ß-induced chondrocytes. Notably, significant effects of EGS on the increment of anabolic gene expressions (Col2, Aggrecan) and the decrement of catabolic gene expressions (MMP13, Adamts5) in KOA chondrocytes were abolished due to the silence of PPARG. Conclusion: E.G. played a chondroprotective role in anti-KOA by inhibiting extracellular matrix degradation, which might be related to PPARG.


Subject(s)
Eucommiaceae , Glycyrrhiza uralensis , Osteoarthritis, Knee , Animals , Mice , Matrix Metalloproteinase 13 , Aggrecans , Molecular Docking Simulation , Network Pharmacology , PPAR gamma
15.
Article in English | MEDLINE | ID: mdl-36982092

ABSTRACT

With the rapid development of urbanization, land cover, and land use patterns have greatly changed in China, which has damaged the landscape structure, affected the energy balance and material flow within the system, and reduced the value of ecosystem services. The construction of landscape ecological security patterns could promote species exchange between biological groups and increase material and energy exchange between landscape elements. Few studies have focused on the randomness of species to migration path, thus failing to objectively reflect the process of species migration and diffusion. Therefore, circuit theory was used in this study to better match the random selection of migration paths by species. In this paper, 14 typical mammal species from the Dawen River basin of the lower Yellow River in China were selected as examples, and the conclusions were as follows: (1) The ecological sources of the Dawen River basin were 49, with forest land and lakes as the main sources, and they were crucial to the stability of the regional ecological security pattern. A total of 128 ecological corridors were identified, among which 83 were key corridors and the rest were potential corridors. The key corridors throughout the whole region need priority protection and can be used as a core area for the observation and monitoring of natural resources. (2) Based on the circuit principle, 32 pinch points and 21 barrier points were identified, indicating that regional habitat connectivity must be further improved. (3) Four types of zones were determined, and optimization measures were proposed. (4) On the basis of conceptual protection, the ecological protection network of the Dawen River basin was built to enhance ecological resilience. The landscape ecological security pattern of the Dawen River basin was constructed from the three levels of points, corridors, and areas. Based on the concept of regional ecological security, a resource optimization strategy for ecological security patterns was proposed, which is significant for maintaining the integrity of watershed ecosystems.


Subject(s)
Conservation of Natural Resources , Ecosystem , Rivers , Forests , China
16.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: mdl-36752205

ABSTRACT

TGF-ß signaling is crucial for modulating osteoarthritis (OA), and protein phosphatase magnesium-dependent 1A (PPM1A) has been reported as a phosphatase of SMAD2 and regulates TGF-ß signaling, while the role of PPM1A in cartilage homeostasis and OA development remains largely unexplored. In this study, we found increased PPM1A expression in OA chondrocytes and confirmed the interaction between PPM1A and phospho-SMAD2 (p-SMAD2). Importantly, our data show that PPM1A KO substantially protected mice treated with destabilization of medial meniscus (DMM) surgery against cartilage degeneration and subchondral sclerosis. Additionally, PPM1A ablation reduced the cartilage catabolism and cell apoptosis after the DMM operation. Moreover, p-SMAD2 expression in chondrocytes from KO mice was higher than that in WT controls with DMM induction. However, intraarticular injection with SD-208, repressing TGF-ß/SMAD2 signaling, dramatically abolished protective phenotypes in PPM1A-KO mice. Finally, a specific pharmacologic PPM1A inhibitor, Sanguinarine chloride (SC) or BC-21, was able to ameliorate OA severity in C57BL/6J mice. In summary, our study identified PPM1A as a pivotal regulator of cartilage homeostasis and demonstrated that PPM1A inhibition attenuates OA progression via regulating TGF-ß/SMAD2 signaling in chondrocytes and provided PPM1A as a potential target for OA treatment.


Subject(s)
Chondrocytes , Osteoarthritis , Protein Phosphatase 2C , Smad2 Protein , Transforming Growth Factor beta , Animals , Mice , Chondrocytes/metabolism , Mice, Inbred C57BL , Osteoarthritis/metabolism , Phosphoprotein Phosphatases/metabolism , Protein Phosphatase 2C/genetics , Signal Transduction , Transforming Growth Factor beta/metabolism , Smad2 Protein/metabolism
17.
Food Funct ; 14(2): 946-960, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36541285

ABSTRACT

This study aimed to examine the in vivo and in vitro therapeutic effects of glycyrrhizic acid (GA) on steroid-induced osteonecrosis of the femoral head (SONFH), which is caused by the overuse of glucocorticoids (GCs). Clinically, we identified elevated oxidative stress (OS) levels and an imbalance in osteolipogenic homeostasis in SONFH patients compared to femoral neck fracture (FNF) patients. In vivo, we established experimental SONFH in rats via lipopolysaccharides (LPSs) combined with methylprednisolone (MPS). We showed that GA and Wnt agonist-S8320 alleviated SONFH, as evidenced by the reduced microstructural and histopathological alterations in the subchondral bone of the femoral head and the decreased levels of OS in rat models. In vitro, GA reduced dexamethasone (Dex)-induced excessive NOX4 and OS levels by activating the Wnt/ß-catenin pathway, thereby promoting the osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibiting lipogenic differentiation. In addition, GA regulated the expression levels of the key transcription factors downstream of this pathway, Runx2 and PPARγ, thus maintaining osteolipogenic homeostasis. In summary, we demonstrated for the first time that GA modulates the osteolipogenic differentiation commitment of MSCs induced by excessive OS through activating the Wnt/ß-catenin pathway, thereby ameliorating SONFH.


Subject(s)
Mesenchymal Stem Cells , beta Catenin , Rats , Animals , beta Catenin/metabolism , Osteogenesis , Glycyrrhizic Acid/pharmacology , Cell Differentiation , Wnt Signaling Pathway , Mesenchymal Stem Cells/metabolism
18.
World J Stem Cells ; 15(12): 1063-1076, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38179213

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is the most prevalent form of degenerative whole-joint disease. Before the final option of knee replacement, arthroscopic surgery was the most widely used joint-preserving surgical treatment. Emerging regenerative therapies, such as those involving platelet-rich plasma, mesenchymal stem cells, and microfragmented adipose tissue (MFAT), have been pushed to the forefront of treatment to prevent the progression of OA. Currently, MFAT has been successfully applied to treat different types of orthopedic diseases. AIM: To assess the efficacy and safety of MFAT with arthroscopic surgery in patients with knee OA (KOA). METHODS: A randomized, multicenter study was conducted between June 2017 and November 2022 in 10 hospitals in Zhejiang, China. Overall, 302 patients diagnosed with KOA (Kellgren-Lawrence grades 2-3) were randomized to the MFAT group (n = 151, were administered MFAT following arthroscopic surgery), or the control group (n = 151, were administered hyaluronic acid following arthroscopic surgery). The study outcomes were changes in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, the visual analog scale (VAS) score, the Lequesne index score, the Whole-Organ Magnetic Resonance Imaging Score (WORMS), and safety over a 24-mo period from baseline. RESULTS: The changes in the WOMAC score (including the three subscale scores), VAS pain score, and Lequesne index score at the 24-mo mark were significantly different in the MFAT and control groups, as well as when comparing values at the posttreatment visit and those at baseline (P < 0.001). The MFAT group consistently demonstrated significant decreases in the WOMAC pain scores and VAS scores at all follow-ups compared to the control group (P < 0.05). Furthermore, the WOMAC stiffness score, WOMAC function score, and Lequesne index score differed significantly between the groups at 12 and 24 mo (P < 0.05). However, no significant between-group differences were observed in the WORMS at 24 mo (P = 0.367). No serious adverse events occurred in both groups. CONCLUSION: The MFAT injection combined with arthroscopic surgery treatment group showed better mid-term clinical outcomes compared to the control group, suggesting its efficacy as a therapeutic approach for patients with KOA.

19.
Infect Drug Resist ; 15: 7307-7316, 2022.
Article in English | MEDLINE | ID: mdl-36536864

ABSTRACT

Purpose: Limited data are available on the characteristics, risk factors, and antimicrobial treatment of critically ill pediatric patients with carbapenem-resistant Enterobacteriaceae (CRE) infections. This study was to identify the risk factors for 30-day mortality in pediatric intensive care unit (PICU) patients with CRE infections and compare the clinical outcomes of different antimicrobial regimens. Methods: A retrospective, observational cohort study was performed on patients admitted to the PICU with positive CRE cultures between January 2016 and December 2021. Results: For the 56 patients, the overall 30-day mortality was 50% (n=28). Multivariable logistic regression analysis revealed that pediatric critical illness score (PCIS; HR = 0.879; 95% CI, 0.827-0.935; P < 0.001) and serum albumin levels (HR = 0.921; 95% CI, 0.860-0.987; P = 0.019) were independently associated with 30-day mortality. At the same time, there was no significant difference in 30-day mortality (42.9% versus 45.5%, P = 0.854) or clinical efficiency rate (53.4% versus 40.9%, P = 0.374) between with and without polymyxin B therapy. Conclusion: The study revealed PCIS and serum albumin levels were the independent mortality-related risk factors of CRE infections in critically ill pediatric patients. Treatment with polymyxin B could not reduce 30-day mortality. Future prospective cohort studies are needed to investigate the optimal antimicrobial regimens for CRE infection in PICU patients.

20.
Biomed Res Int ; 2022: 9230784, 2022.
Article in English | MEDLINE | ID: mdl-35937393

ABSTRACT

Gujian oral liquid (GJ), a traditional herbal formula in China, has been widely used to treat patients with osteoarthritis (OA). Nevertheless, the active component and potential mechanism of GJ are not fully elucidated. Thus, we investigate the effect of GJ and explore its underlying mechanism on OA through network pharmacology and experimental validation. First, a total of 175 bioactive compounds were identified, and 134 overlapping targets were acquired after comparing the targets of the GJ with those of OA. 8 hub targets, including IL6 and AKT1, were obtained in PPI network analysis. Then, we built up GJ-target-OA network and protein-protein interaction (PPI) network, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The results underlined inflammatory tumor necrosis factor (TNF) as a promising signaling pathway of GJ for OA treatment. Moreover, molecular docking also verified the top two active compounds had direct bindings with the top three target genes. Finally, we verified the effect of GJ on OA in vivo and in vitro. In vivo experiments validated that GJ not only significantly attenuated OA phenotypes including articular cartilage degeneration and subchondral bone sclerosis but also reduced the expressions of tumor necrosis factor-α (TNF-α) and p-p65 in articular chondrocytes. Besides, GJ serum also had a protective effect on chondrocytes against inflammation caused by TNF-α in vitro. Hence, our study predicted and verified that GJ could exert anti-inflammation and anticatabolism effects partially via regulating TNF-α/NF-kappa B (NF-κB) signaling.


Subject(s)
Osteoarthritis , Tumor Necrosis Factor-alpha , Chondrocytes/metabolism , Humans , Molecular Docking Simulation , NF-kappa B/metabolism , Network Pharmacology , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...