Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Publication year range
1.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1023089

ABSTRACT

The role of glial scar after intracerebral hemorrhage(ICH)remains unclear.This study aimed to inves-tigate whether microglia-astrocyte interaction affects glial scar formation and explore the specific function of glial scar.We used a pharmacologic approach to induce microglial depletion during different ICH stages and examine how ablating microglia affects astrocytic scar formation.Spatial transcriptomics(ST)analysis was performed to explore the potential ligand-receptor pair in the modulation of microglia-astrocyte interaction and to verify the functional changes of astrocytic scars at different periods.During the early stage,sustained microglial depletion induced disorganized astrocytic scar,enhanced neutrophil infiltration,and impaired tissue repair.ST analysis indicated that microglia-derived insulin like growth factor 1(IGF1)modulated astrocytic scar formation via mechanistic target of rapamycin(mTOR)signaling activation.Moreover,repopulating microglia(RM)more strongly activated mTOR signaling,facilitating a more protective scar formation.The combination of IGF1 and osteopontin(OPN)was necessary and sufficient for RM function,rather than IGF1 or OPN alone.At the chronic stage of ICH,the overall net effect of astrocytic scar changed from protective to destructive and delayed microglial depletion could partly reverse this.The vital insight gleaned from our data is that sustained microglial depletion may not be a reasonable treatment strategy for early-stage ICH.Inversely,early-stage IGF1/OPN treatment combined with late-stage PLX3397 treatment is a promising therapeutic strategy.This prompts us to consider the complex temporal dynamics and overall net effect of microglia and astrocytes,and develop elaborate treatment strategies at precise time points after ICH.

2.
Exp Neurol ; 336: 113535, 2021 02.
Article in English | MEDLINE | ID: mdl-33249033

ABSTRACT

Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating disease, which mainly caused by the rupture of an intracranial aneurysm. Clinical trials have demonstrated that cerebral vasospasm (CVS) is not the sole contributor to delayed cerebral ischemia (DCI) and poor outcomes in patients with aSAH. Currently, accumulating evidence suggests that early brain injury (EBI), which occurs within 72 h after the onset of aSAH, lays the foundation for subsequent pathophysiological changes and poor outcomes of patients. The pathological mechanisms of EBI mainly include increased intracranial pressure, oxidative stress, neuroinflammation, blood-brain barrier (BBB) disruption, cerebral edema and cell death. Among them, the brain immune inflammatory responses involve a variety of immune cells and active substances, which play an important role in EBI after aSAH and may be related to DCI and long-term outcomes. Thus, attention should be paid to strategies targeting cerebral immune inflammatory responses. In this review, we discuss the role of immune inflammatory responses in the occurrence and development of aSAH, as well as some inflammatory biomarkers related to CVS, DCI, and aSAH outcomes. In addition, we also summarize the potential therapeutic drugs that target cerebral immune inflammatory responses for patients with aSAH in current research.


Subject(s)
Inflammation/immunology , Subarachnoid Hemorrhage/immunology , Animals , Biomarkers , Humans , Inflammation/pathology , Subarachnoid Hemorrhage/pathology
SELECTION OF CITATIONS
SEARCH DETAIL