Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Pharm Bull ; 47(1): 192-195, 2024.
Article in English | MEDLINE | ID: mdl-38233149

ABSTRACT

Plasmalogens are a family of glycerophospholipids containing one vinyl-ether bond at the sn-1 position in the glycerol backbone, and play important roles in cellular homeostasis including neural transmission. Therefore, reductions of plasmalogens have been associated with neurodegenerative disorders, such as Alzheimer's disease (AD). To evaluate the potential protective effects of plasmalogens against the pathology of AD, protein expression levels of key factors in amyloid precursor protein (APP) metabolic processes were examined using human neuroblastoma SH-SY5Y cells. Here, phosphatidylcholine-plasmalogen-oleic acid (PC-PLS-18) was shown to reduce protein expression levels of ß-site APP cleaving enzyme 1 (BACE1), clusterin, and Tau, factors involved in the amyloid ß-associated pathogenesis of AD. Thus, PC-PLS-18 may have preventive effects against AD by delaying the onset risk for a certain period.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Amyloid beta-Peptides/metabolism , Amyloid Precursor Protein Secretases/metabolism , Plasmalogens , Aspartic Acid Endopeptidases/metabolism , Oleic Acid , Phosphatidylcholines/pharmacology , Neuroblastoma/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism
2.
Front Microbiol ; 10: 1764, 2019.
Article in English | MEDLINE | ID: mdl-31417538

ABSTRACT

Aquaculture industries are under threat from noxious red tides, but harm can be mitigated by precautions such as early harvesting and restricting fish feeding to just before the outbreak of a red tide. Therefore, accurate techniques for forecasting red-tide outbreaks are strongly needed. Omics analyses have the potential to expand our understanding of the eco-physiology of these organisms at the molecular level, and to facilitate identification of molecular markers for forecasting their population dynamics and occurrence of damages to fisheries. Red tides of marine raphidophytes, especially Chattonella species, often extensively harm aquaculture industries in regions with a temperate climate around the world. A red tide of Chattonella tends to develop just after an input of nutrients along the coast. Chattonella displays diurnal vertical migration regulated by a weak blue light, so it photosynthesizes in the surface layer during the daytime and takes up nutrients in the bottom layer during the nighttime. Superoxide produced by Chattonella cells is a strong candidate for the cause of its toxicity to bacteria and fishes. Here we conducted mRNA-seq of Chattonella antiqua to identify genes with functions closely related to the dynamics of the noxious red tide, such as photosynthesis, photoreception, nutrient uptake, and superoxide production. The genes related to photosynthetic pigment biosynthesis and nutrient uptake had high similarity with those of model organisms of plants and algae and other red-tide microalgae. We identified orthologous genes of photoreceptors such as aureochrome (newly five genes), the cryptochrome/photolyase (CRY/PHR) family (6-4PHR, plant CRY or cyclobutane pyrimidine dimer [CPD] Class III, CPD Class II, and CRY-DASH), and phytochrome (four genes), which regulate various physiological processes such as flagellar motion and cell cycle in model organisms. Six orthologous genes of NADPH oxidase, which produces superoxide on the cell membrane, were found and divided into two types: one with 5-6 transmembrane domains and another with 11 transmembrane domains. The present study should open the way for analyzing the eco-physiological features of marine raphidophytes at the molecular level.

SELECTION OF CITATIONS
SEARCH DETAIL
...