Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
bioRxiv ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38798389

ABSTRACT

Significance: Accurate sensor placement is vital for non-invasive brain imaging, particularly for functional near infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT), which lack standardized layouts like EEG. Custom, manually prepared probe layouts on textile caps are often imprecise and labor-intensive. Aim: We introduce a method for creating personalized, 3D-printed headgear, enabling accurate translation of 3D brain coordinates to 2D printable panels for custom fNIRS and EEG sensor layouts, reducing costs and manual labor. Approach: Our approach uses atlas-based or subject-specific head models and a spring-relaxation algorithm for flattening 3D coordinates onto 2D panels, using 10-5 EEG coordinates for reference. This process ensures geometrical fidelity, crucial for accurate probe placement. Probe geometries and holder types are customizable and printed directly on the cap, making the approach agnostic to instrument manufacturers and probe types. Results: Our ninjaCap method offers 2.2±1.5 mm probe placement accuracy. Over the last five years, we have developed and validated this approach with over 50 cap models and 500 participants. A cloud-based ninjaCap generation pipeline along with detailed instructions is now available at openfnirs.org. Conclusions: The ninjaCap marks a significant advancement in creating individualized neuroimaging caps, reducing costs and labor while improving probe placement accuracy, thereby reducing variability in research.

4.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328139

ABSTRACT

When analyzing complex scenes, humans often focus their attention on an object at a particular spatial location. The ability to decode the attended spatial location would facilitate brain computer interfaces for complex scene analysis (CSA). Here, we investigated capability of functional near-infrared spectroscopy (fNIRS) to decode audio-visual spatial attention in the presence of competing stimuli from multiple locations. We targeted dorsal frontoparietal network including frontal eye field (FEF) and intra-parietal sulcus (IPS) as well as superior temporal gyrus/planum temporal (STG/PT). They all were shown in previous functional magnetic resonance imaging (fMRI) studies to be activated by auditory, visual, or audio-visual spatial tasks. To date, fNIRS has not been applied to decode auditory and visual-spatial attention during CSA, and thus, no such dataset exists yet. This report provides an open-access fNIRS dataset that can be used to develop, test, and compare machine learning algorithms for classifying attended locations based on the fNIRS signals on a single trial basis.

5.
Brain Sci ; 13(7)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37509043

ABSTRACT

Previous studies suggest that producing and comprehending semantically related words relies on inhibitory control over competitive lexical selection which results in the recruitment of the left inferior frontal gyrus (IFG). Few studies, however, have examined the involvement of other regions of the frontal cortex, such as the dorsolateral prefrontal cortex (DLPFC), despite its role in cognitive control related to lexical processing. The primary objective of this study was to elucidate the role of the DLPFC in the production and comprehension of semantically and phonologically related words in blocked cyclic naming and picture-word matching paradigms. Twenty-one adults participated in neuroimaging with functional near-infrared spectroscopy to measure changes in oxygenated and deoxygenated hemoglobin concentrations across the bilateral frontal cortex during blocked cyclic picture naming and blocked cyclic picture-word-matching tasks. After preprocessing, oxygenated and deoxygenated hemoglobin concentrations were obtained for each task (production, comprehension), condition (semantic, phonological) and region (DLPFC, IFG). The results of pairwise t-tests adjusted for multiple comparisons showed significant increases in oxygenated hemoglobin concentration over baseline in the bilateral DLPFC during picture naming for phonologically related words. For picture-word matching, we found significant increases in oxygenated hemoglobin concentration over baseline in the right DLPFC for semantically related words and in the right IFG for phonologically related words. We discuss the results in light of the inhibitory attentional control over competitive lexical access theory in contrast to alternative potential explanations for the findings.

6.
Neurophotonics ; 10(1): 013507, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36507152

ABSTRACT

Significance: Functional near-infrared spectroscopy (fNIRS) is a popular neuroimaging technique with proliferating hardware platforms, analysis approaches, and software tools. There has not been a standardized file format for storing fNIRS data, which has hindered the sharing of data as well as the adoption and development of software tools. Aim: We endeavored to design a file format to facilitate the analysis and sharing of fNIRS data that is flexible enough to meet the community's needs and sufficiently defined to be implemented consistently across various hardware and software platforms. Approach: The shared NIRS format (SNIRF) specification was developed in consultation with the academic and commercial fNIRS community and the Society for functional Near Infrared Spectroscopy. Results: The SNIRF specification defines a format for fNIRS data acquired using continuous wave, frequency domain, time domain, and diffuse correlation spectroscopy devices. Conclusions: We present the SNIRF along with validation software and example datasets. Support for reading and writing SNIRF data has been implemented by major hardware and software platforms, and the format has found widespread use in the fNIRS community.

7.
Neurophotonics ; 10(1): 013504, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36284602

ABSTRACT

Significance: Advances in electronics have allowed the recent development of compact, high channel count time domain functional near-infrared spectroscopy (TD-fNIRS) systems. Temporal moment analysis has been proposed for increased brain sensitivity due to the depth selectivity of higher order temporal moments. We propose a general linear model (GLM) incorporating TD moment data and auxiliary physiological measurements, such as short separation channels, to improve the recovery of the HRF. Aims: We compare the performance of previously reported multi-distance TD moment techniques to commonly used techniques for continuous wave (CW) fNIRS hemodynamic response function (HRF) recovery, namely block averaging and CW GLM. Additionally, we compare the multi-distance TD moment technique to TD moment GLM. Approach: We augmented resting TD-fNIRS moment data (six subjects) with known synthetic HRFs. We then employed block averaging and GLM techniques with "short-separation regression" designed both for CW and TD to recover the HRFs. We calculated the root mean square error (RMSE) and the correlation of the recovered HRF to the ground truth. We compared the performance of equivalent CW and TD techniques with paired t-tests. Results: We found that, on average, TD moment HRF recovery improves correlations by 98% and 48% for HbO and HbR respectively, over CW GLM. The improvement on the correlation for TD GLM over TD moment is 12% (HbO) and 27% (HbR). RMSE decreases 56% and 52% (HbO and HbR) for TD moment compared to CW GLM. We found no statistically significant improvement in the RMSE for TD GLM compared to TD moment. Conclusions: Properly covariance-scaled TD moment techniques outperform their CW equivalents in both RMSE and correlation in the recovery of the synthetic HRFs. Furthermore, our proposed TD GLM based on moments outperforms regular TD moment analysis, while allowing the incorporation of auxiliary measurements of the confounding physiological signals from the scalp.

8.
Neurophotonics ; 9(2): 025003, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35692628

ABSTRACT

Significance: Functional near-infrared spectroscopy (fNIRS) is a noninvasive technique for measuring hemodynamic changes in the human cortex related to neural function. Due to its potential for miniaturization and relatively low cost, fNIRS has been proposed for applications, such as brain-computer interfaces (BCIs). The relatively large magnitude of the signals produced by the extracerebral physiology compared with the ones produced by evoked neural activity makes real-time fNIRS signal interpretation challenging. Regression techniques incorporating physiologically relevant auxiliary signals such as short separation channels are typically used to separate the cerebral hemodynamic response from the confounding components in the signal. However, the coupling of the extra-cerebral signals is often noninstantaneous, and it is necessary to find the proper delay to optimize nuisance removal. Aim: We propose an implementation of the Kalman filter with time-embedded canonical correlation analysis for the real-time regression of fNIRS signals with multivariate nuisance regressors that take multiple delays into consideration. Approach: We tested our proposed method on a previously acquired finger tapping dataset with the purpose of classifying the neural responses as left or right. Results: We demonstrate computationally efficient real-time processing of 24-channel fNIRS data (400 samples per second per channel) with a two order of selective magnitude decrease in cardiac signal power and up to sixfold increase in the contrast-to-noise ratio compared with the nonregressed signals. Conclusion: The method provides a way to obtain better distinction of brain from non-brain signals in real time for BCI application with fNIRS.

9.
Article in English | MEDLINE | ID: mdl-33709044

ABSTRACT

Functional Near-Infrared Spectroscopy (fNIRS) assesses human brain activity by noninvasively measuring changes of cerebral hemoglobin concentrations caused by modulation of neuronal activity. Recent progress in signal processing and advances in system design, such as miniaturization, wearability and system sensitivity, have strengthened fNIRS as a viable and cost-effective complement to functional Magnetic Resonance Imaging (fMRI), expanding the repertoire of experimental studies that can be performed by the neuroscience community. The availability of fNIRS and Electroencephalography (EEG) for routine, increasingly unconstrained, and mobile brain imaging is leading towards a new domain that we term "Neuroscience of the Everyday World" (NEW). In this light, we review recent advances in hardware, study design and signal processing, and discuss challenges and future directions towards achieving NEW.

11.
Neurophotonics ; 8(1): 012101, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33442557

ABSTRACT

The application of functional near-infrared spectroscopy (fNIRS) in the neurosciences has been expanding over the last 40 years. Today, it is addressing a wide range of applications within different populations and utilizes a great variety of experimental paradigms. With the rapid growth and the diversification of research methods, some inconsistencies are appearing in the way in which methods are presented, which can make the interpretation and replication of studies unnecessarily challenging. The Society for Functional Near-Infrared Spectroscopy has thus been motivated to organize a representative (but not exhaustive) group of leaders in the field to build a consensus on the best practices for describing the methods utilized in fNIRS studies. Our paper has been designed to provide guidelines to help enhance the reliability, repeatability, and traceability of reported fNIRS studies and encourage best practices throughout the community. A checklist is provided to guide authors in the preparation of their manuscripts and to assist reviewers when evaluating fNIRS papers.

13.
Sci Rep ; 10(1): 10965, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620887

ABSTRACT

Recently, cortical areas with motor properties have attracted attention widely to their involvement in both action generation and perception. Inferior frontal gyrus (IFG), ventral premotor cortex (PMv) and inferior parietal lobule (IPL), presumably consisting of motor-related areas, are of particular interest, given that they respond to motor behaviors both when they are performed and observed. Converging neuroimaging evidence has shown the functional roles of IFG, PMv and IPL in action understanding. Most studies have focused on the effects of modulations in goals and kinematics of observed actions on the brain response, but little research has explored the effects of manipulations in motor complexity. To address this, we used fNIRS to examine the brain activity in the frontal, motor, parietal and occipital regions, aiming to better understand the brain correlates involved in encoding motor complexity. Twenty-one healthy adults executed and observed two hand actions that differed in motor complexity. We found that motor complexity sensitive brain regions were present in the pars opercularis IFG/PMv, primary motor cortex (M1), IPL/supramarginal gyrus and middle occipital gyrus (MOG) during action execution, and in pars opercularis IFG/PMv and M1 during action observation. Our findings suggest that the processing of motor complexity involves not only M1 but also pars opercularis IFG, PMv and IPL, each of which plays a critical role in action perception and execution.


Subject(s)
Brain/physiology , Motor Skills/physiology , Adolescent , Adult , Brain/diagnostic imaging , Brain Mapping/instrumentation , Female , Functional Neuroimaging/instrumentation , Hand , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Motor Cortex/physiology , Oxyhemoglobins/metabolism , Parietal Lobe/physiology , Prefrontal Cortex/physiology , Spectroscopy, Near-Infrared/instrumentation , Young Adult
14.
Neuroimage ; 208: 116472, 2020 03.
Article in English | MEDLINE | ID: mdl-31870944

ABSTRACT

For the robust estimation of evoked brain activity from functional Near-Infrared Spectroscopy (fNIRS) signals, it is crucial to reduce nuisance signals from systemic physiology and motion. The current best practice incorporates short-separation (SS) fNIRS measurements as regressors in a General Linear Model (GLM). However, several challenging signal characteristics such as non-instantaneous and non-constant coupling are not yet addressed by this approach and additional auxiliary signals are not optimally exploited. We have recently introduced a new methodological framework for the unsupervised multivariate analysis of fNIRS signals using Blind Source Separation (BSS) methods. Building onto the framework, in this manuscript we show how to incorporate the advantages of regularized temporally embedded Canonical Correlation Analysis (tCCA) into the supervised GLM. This approach allows flexible integration of any number of auxiliary modalities and signals. We provide guidance for the selection of optimal parameters and auxiliary signals for the proposed GLM extension. Its performance in the recovery of evoked HRFs is then evaluated using both simulated ground truth data and real experimental data and compared with the GLM with short-separation regression. Our results show that the GLM with tCCA significantly improves upon the current best practice, yielding significantly better results across all applied metrics: Correlation (HbO max. +45%), Root Mean Squared Error (HbO max. -55%), F-Score (HbO up to 3.25-fold) and p-value as well as power spectral density of the noise floor. The proposed method can be incorporated into the GLM in an easily applicable way that flexibly combines any available auxiliary signals into optimal nuisance regressors. This work has potential significance both for conventional neuroscientific fNIRS experiments as well as for emerging applications of fNIRS in everyday environments, medicine and BCI, where high Contrast to Noise Ratio is of importance for single trial analysis.


Subject(s)
Functional Neuroimaging/standards , Models, Statistical , Spectroscopy, Near-Infrared/standards , Adult , Artifacts , Female , Functional Neuroimaging/methods , Humans , Linear Models , Male , Spectroscopy, Near-Infrared/methods , Young Adult
15.
Neuroimage ; 197: 575-585, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31075393

ABSTRACT

The primary psychoactive compound in cannabis, Δ9-tetrahydrocannabinol (THC), binds to cannabinoid receptors (CB1) present in high concentrations in the prefrontal cortex (PFC). It is unknown whether the PFC hemodynamic response changes with THC intoxication. We conducted the first double-blind, placebo-controlled, cross-over study of the effect of THC intoxication on functional near infrared spectroscopy (fNIRS) measures of PFC activation. Fifty-four adult, regular (at least weekly) cannabis users received a single oral dose of synthetic THC (dronabinol; 5-50 mg, dose individually tailored to produce intoxication) and identical placebo on two visits at least one week apart. fNIRS recordings were obtained during a working memory task (N-Back) at three timepoints: before THC/placebo, at 100 min (when peak effects were expected), and at 200 min after THC/placebo administration. Functional data were collected using a continuous-wave NIRS device, with 8 sources and 7 detectors arrayed over the forehead, resulting in 20 channels covering PFC regions. Participants also completed frequent heart rate measures and subjective ratings of intoxication. Approximately half of participants reported significant intoxication. Intoxication ratings were not correlated with dose of THC. Increases in heart rate significantly correlated with intoxication ratings after THC dosing. Results indicated that 100 min after THC administration, oxygenated hemoglobin (HbO) response significantly increased from pre-dose HbO levels throughout the PFC in participants who reported significant intoxication. Changes in HbO response significantly correlated with self-reported intoxication at 100 min after THC administration. Among those who reported intoxication, HbO response decreased at 200 min after THC, when intoxication had largely resolved, compared to the peak THC time point. This study demonstrates that THC intoxication causes increased PFC activity, and fNIRS of the PFC can measure this effect. Increased neural activation in PFC represents a potential biomarker for cannabis intoxication.


Subject(s)
Dronabinol/adverse effects , Marijuana Abuse/diagnosis , Prefrontal Cortex/drug effects , Spectroscopy, Near-Infrared/methods , Adult , Cross-Over Studies , Double-Blind Method , Female , Heart Rate/drug effects , Humans , Male
16.
Sci Adv ; 4(10): eaat3807, 2018 10.
Article in English | MEDLINE | ID: mdl-30306130

ABSTRACT

Measuring motor skill proficiency is critical for the certification of highly skilled individuals in numerous fields. However, conventional measures use subjective metrics that often cannot distinguish between expertise levels. We present an advanced optical neuroimaging methodology that can objectively and successfully classify subjects with different expertise levels associated with bimanual motor dexterity. The methodology was tested by assessing laparoscopic surgery skills within the framework of the fundamentals of a laparoscopic surgery program, which is a prerequisite for certification in general surgery. We demonstrate that optical-based metrics outperformed current metrics for surgical certification in classifying subjects with varying surgical expertise. Moreover, we report that optical neuroimaging allows for the successful classification of subjects during the acquisition of these skills.


Subject(s)
Motor Skills/physiology , Neuroimaging/methods , Spectroscopy, Near-Infrared/methods , Surgeons , Humans , Laparoscopy , Multivariate Analysis , Neuroimaging/instrumentation , Neuroimaging/statistics & numerical data , Optics and Photonics/instrumentation , Optics and Photonics/methods , Students, Medical , Surgeons/classification , Surgeons/education
17.
Front Hum Neurosci ; 12: 394, 2018.
Article in English | MEDLINE | ID: mdl-30349466

ABSTRACT

Functional near infrared spectroscopy (fNIRS) is a non-invasive optical imaging method that provides continuous measure of cortical brain functions. One application has been its use in the evaluation of pain. Previous studies have delineated a deoxygenation process associated with pain in the medial anterior prefrontal region, more specifically, the medial Brodmann Area 10 (BA 10). Such response to painful stimuli has been consistently observed in awake, sedated and anesthetized patients. In this study, we administered oral morphine (15 mg) or placebo to 14 healthy male volunteers with no history of pain or opioid abuse in a crossover double blind design, and performed fNIRS scans prior to and after the administration to assess the effect of morphine on the medial BA 10 pain signal. Morphine is the gold standard for inhibiting nociceptive processing, most well described for brain effects on sensory and emotional regions including the insula, the somatosensory cortex (the primary somatosensory cortex, S1, and the secondary somatosensory cortex, S2), and the anterior cingulate cortex (ACC). Our results showed an attenuation effect of morphine on the fNIRS-measured pain signal in the medial BA 10, as well as in the contralateral S1 (although observed in a smaller number of subjects). Notably, the extent of signal attenuation corresponded with the temporal profile of the reported plasma concentration for the drug. No clear attenuation by morphine on the medial BA 10 response to innocuous stimuli was observed. These results provide further evidence for the role of medial BA 10 in the processing of pain, and also suggest that fNIRS may be used as an objective measure of drug-brain profiles independent of subjective reports.

18.
Exp Gerontol ; 113: 95-105, 2018 11.
Article in English | MEDLINE | ID: mdl-30261247

ABSTRACT

It is well established that older adults are less able to perform attentionally demanding motor tasks, placing them at greater risk of accident-related injury. The primary purpose of this study was to investigate whether the interplay between prefrontal and motor cortex activity could predict such age-related performance deficits. Using a dual-task (DT) paradigm, 15 younger and 15 older adults participated in experiment 1, where brain activity was simultaneously measured using functional near infrared spectroscopy (fNIRS) and transcranial magnetic stimulation (TMS). Experiment 1 demonstrated poorer performance for the older group across a range of DTs combining visuomotor arm tracking with a secondary cognitive or motor task. Interestingly however, older adults' DT performance error was isolated to the motor component of DTs. TMS data revealed reduced motor cortex (M1) inhibition during DTs for older adults, and a trend for this correlating with poorer performance. In contrast, poorer performing younger adults showed significantly higher M1 inhibition. Experiment 2 was conducted given a high amount of movement artifact in experiment 1 fNIRS data. Using fNIRS to measure prefrontal, premotor, and motor cortex activity in an additional 15 older adults, we found no evidence of an interplay between these regions predicting DT performance. Nevertheless, performance data replicated experiment 1 in showing that DT error was isolated to motor tasks in older adults, with no significant cognitive task error. Overall, this study shows that older adults seemed to adopt a 'cognitive-first' prioritisation strategy during the DTs involved in our study, and that deficits in DT performance may be related to the modulation of M1 inhibitory mechanisms. We propose that clinicians advise older adults to allocate greater attention to motor tasks during activities where they may be at risk of accident-related injury.


Subject(s)
Aging/physiology , Executive Function/physiology , Motor Cortex/physiology , Psychomotor Performance/physiology , Transcranial Magnetic Stimulation , Adult , Aged , Female , Humans , Male , Middle Aged , Spectroscopy, Near-Infrared , Task Performance and Analysis , Young Adult
19.
Neurophotonics ; 5(1): 015003, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29430471

ABSTRACT

Motion artifact contamination in near-infrared spectroscopy (NIRS) data has become an important challenge in realizing the full potential of NIRS for real-life applications. Various motion correction algorithms have been used to alleviate the effect of motion artifacts on the estimation of the hemodynamic response function. While smoothing methods, such as wavelet filtering, are excellent in removing motion-induced sharp spikes, the baseline shifts in the signal remain after this type of filtering. Methods, such as spline interpolation, on the other hand, can properly correct baseline shifts; however, they leave residual high-frequency spikes. We propose a hybrid method that takes advantage of different correction algorithms. This method first identifies the baseline shifts and corrects them using a spline interpolation method or targeted principal component analysis. The remaining spikes, on the other hand, are corrected by smoothing methods: Savitzky-Golay (SG) filtering or robust locally weighted regression and smoothing. We have compared our new approach with the existing correction algorithms in terms of hemodynamic response function estimation using the following metrics: mean-squared error, peak-to-peak error ([Formula: see text]), Pearson's correlation ([Formula: see text]), and the area under the receiver operator characteristic curve. We found that spline-SG hybrid method provides reasonable improvements in all these metrics with a relatively short computational time. The dataset and the code used in this study are made available online for the use of all interested researchers.

20.
Neurophotonics ; 5(1): 011018, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29057285

ABSTRACT

Currently, there is no method for providing a nonverbal objective assessment of pain. Recent work using functional near-infrared spectroscopy (fNIRS) has revealed its potential for objective measures. We conducted two fNIRS scans separated by 30 min and measured the hemodynamic response to the electrical noxious and innocuous stimuli over the anterior prefrontal cortex (aPFC) in 14 subjects. Based on the estimated hemodynamic response functions (HRFs), we first evaluated the test-retest reliability of using fNIRS in measuring the pain response over the aPFC. We then proposed a general linear model (GLM)-based detection model that employs the subject-specific HRFs from the first scan to detect the pain response in the second scan. Our results indicate that fNIRS has a reasonable reliability in detecting the hemodynamic changes associated with noxious events, especially in the medial portion of the aPFC. Compared with a standard HRF with a fixed shape, including the subject-specific HRFs in the GLM allows for a significant improvement in the detection sensitivity of aPFC pain response. This study supports the potential application of individualized analysis in using fNIRS and provides a robust model to perform objective determination of pain perception.

SELECTION OF CITATIONS
SEARCH DETAIL
...