Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(9): 13155-13174, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38243026

ABSTRACT

The quality of soil is essential for ensuring the safety and quality of agricultural products. However, soils contaminated with toxic metals pose a significant threat to agricultural production and human health. Therefore, remediation of contaminated soils is an urgent task, and humic acid (HA) with hydroxyapatite (HAP) materials was applied for this study in contaminated alkaline soils to remediate Cd, Pb, Cu, and Zn. Physiochemical properties, improved BCR sequential extraction, microbial community composition in soils with superoxide dismutase (SOD), peroxidase (POD), and chlorophyll content in plants were determined. Among the studied treatments, application of HAP-HA (2:1) (T7) had the most significant impact on reducing the active forms of toxic metals from soil such as Cd, Pb, Cu, and Zn decreased by 18.59%, 9.12%, 11.83%, and 3.33%, respectively, but HAP and HA had a minor impact on metal accumulation in Juncao. HAP (T2) had a beneficial impact on reducing the TCleaf/root of Cd, Cu, and Zn, whereas HAP-HA (T5) showed the best performance for reducing Cd and Cu in EFleaf/soil. HAP-HA (T5 and T7) showed higher biomass (57.3%) and chlorophyll (17.9%), whereas HAP (T4) showed better performance in POD (25.8%) than T0 in Juncao. The bacterial diversity in soil was increased after applying amendments of various treatments and enhancing metal remediation. The combined application of HAP and HA effectively reduced active toxic metals in alkaline soil. HAP-HA mixtures notably improved soil health, plant growth, and microbial diversity, advocating for their use in remediating contaminated soils.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Metals, Heavy/analysis , Humic Substances , Cadmium/analysis , Durapatite , Lead , Soil Pollutants/analysis , Soil/chemistry , Chlorophyll
2.
Inorg Chem ; 62(31): 12413-12422, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37489948

ABSTRACT

Transition metal subchalcogenides involve electron-rich metals and can facilitate an in-depth understanding of the relationships among quantum properties such as superconductivity, charge density wave, and topological band structures. However, effective experimental routes toward synthesizing transition metal subchalcogenides are still lacking, hindering the development of new quantum materials. Herein, we propose a eutectic polytelluride flux strategy as an excellent solution to address phase discovery and crystal growth in transition metal subtelluride systems. We report new phases easily and selectively synthesized using a eutectic "K3Te4" polytelluride flux upon adjusting the ratio of Nb metal to flux in the starting materials (K/Nb/Te = 3:x:4). Using a high Nb content in the solvent (x = 2 and 1), crystals of KNb3Te3O0.38 and K0.9Nb3Te4 are obtained. Both subtellurides exhibit diverse Nb clusters, including face-sharing and edge-sharing Nb6 octahedral columns and zig-zag Nb chains. Reducing the Nb content to x = 0.33 leads to the formation of a layered compound, K1.06NbTe2. This compound comprises a NbTe6 trigonal prism with K intercalated between the layers. Single crystals of known binary Nb tellurides can also be grown using another eutectic flux "KTe3.2", and the obtained NbTe2 exhibits a new polymorphism with extra trimerization along the b-axis in the Nb-Nb bonded double zig-zag cluster. Precise control over the structural dimensionality and oxidation state, combined with the facile crystal growth process, makes our synthetic strategy an efficient route to explore quantum materials in transition metal subchalcogenides.

3.
Sci Total Environ ; 859(Pt 2): 160315, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36403838

ABSTRACT

Soil quality is critical to the quality and safety of agricultural products, and remediation of heavy metal contaminated soils is an urgent task to be implemented. This study applied hydroxyapatite (HAP) and humic acid (HA) as remediation materials to Cd-contaminated alkaline cropland. Data on soil pH, electrical conductivity (EC), cation exchange capacity (CEC), soil organic matter (SOM), diethylenetriamine pentaacetic acid (DTPA) extraction, and improved BCR sequential extraction were obtained for different periods. The joint application of HAP and HA enhanced the soil's buffering capacity. During the experiment, treatment groups CK, H1, H2, H3, and H4 showed changes in pH of 0.29, 0.28, 0.21, 0.24, and 0.32, respectively, and changes in the conductivity of 341.4, 183.0, 133.1, 104.6 and 320.2 µS/cm. Soil organic matter had a positive effect on soil's effective phosphorus content. HAP and HA both reduced the BCFgrain/soil of Cd for the maize, but the impact of HA was more substantial (20.19 % reduction compared to CK). HA increased the yield of maize by 44.20 %. The combination of HA and HAP was recommended.


Subject(s)
Humic Substances , Soil Pollutants , Humic Substances/analysis , Cadmium/analysis , Soil Pollutants/analysis , Zea mays , Durapatite/chemistry , Soil/chemistry
4.
Appl Geogr ; 147: 102768, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35936827

ABSTRACT

Even though exposure to urban green spaces (UGS) has physical and mental health benefits during COVID-19, whether visiting UGS will exacerbate viral transmission and what types of counties would be more impacted remain to be answered. In this research, we adopted mobile phone data to measure the county-level UGS visitation across the United States. We developed a Bayesian model to estimate the effective production number of the pandemic. To consider the spatial dependency, we applied the geographically weighted panel regression to estimate the association between UGS visitation and viral transmission. We found that visitations to UGS may be positively correlated with the viral spread in Florida, Idaho, New Mexico, Texas, New York, Ohio, and Pennsylvania. Especially noteworthy is that the spread of COVID-19 in the majority of counties is not associated with green space visitation. Further, we found that when people visit UGS, there may be a positive association between median age and viral transmission in New Mexico, Colorado, and Missouri; a positive association between concentration of blacks and viral transmission in North Dakota, Minnesota, Wisconsin, Michigan, and Florida; and a positive association between poverty rate and viral transmission in Iowa, Missouri, Colorado, New Mexico, and the Northeast United States.

5.
PLoS One ; 17(1): e0263423, 2022.
Article in English | MEDLINE | ID: mdl-35100305

ABSTRACT

Anomaly detection in network traffic is becoming a challenging task due to the complexity of large-scale networks and the proliferation of various social network applications. In the actual industrial environment, only recently obtained unlabelled data can be used as the training set. The accuracy of the abnormal ratio in the training set as prior knowledge has a great influence on the performance of the commonly used unsupervised algorithms. In this study, an anomaly detection algorithm based on X-means and iForest is proposed, named X-iForest, which clusters the standard Euclidean distance between the abnormal points and the normal cluster centre to achieve secondary filtering by using X-means. We compared X-iForest with seven mainstream unsupervised algorithms in terms of the AUC and anomaly detection rates. A large number of experiments showed that X-iForest has notable advantages over other algorithms and can be well applied to anomaly detection of large-scale network traffic data.


Subject(s)
Algorithms , Neural Networks, Computer , Area Under Curve , Computer Simulation
6.
Environ Sci Pollut Res Int ; 29(17): 25810-25823, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34846662

ABSTRACT

The increasing diesel pollution accidents pose a serious threat to the ecological environment and human health. Remediation of diesel-contaminated soil (DCS) has attracted widespread attention during the past few decades. This work proposed an approach for the remediation of DCS by alkoxyethanol aqueous two-phase extraction (ATPE), which was an application of this small molecule aqueous two-phase system (ATPS). In addition, the influence of temperature, stirring speed, stirring time, and solid-liquid ratio on the removal of diesel was explored respectively. The removal efficiency of diesel could reach more than 97.18% in 18 min. Meanwhile, ATPS had high reusability, and the removal efficiency remained above 85.17% in the reuse process. Alkoxyethanol ATPE could effectively remove diesel hydrocarbons with different carbon chain lengths and the remediation process hardly caused residual organic solvents on the soil surface according to the analysis of gas chromatography-mass spectrometry (GC-MS) and Fourier transforms infrared (FT-IR), which could be regarded as the distinct advantage compared to the traditional surfactant washing method and organic solvent extraction method. The study of soil physicochemical properties and wheat germination proved that the soil structure and properties changed little after ATPE remediation. And finally, the mechanism of alkoxyethanol ATPE was intensively discussed according to the remediation characteristic. This work provided an efficient method for the remediation of DCS and widened the application fields of alkoxyethanol ATPS as well.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants , Environmental Pollution/analysis , Humans , Soil/chemistry , Soil Pollutants/analysis , Spectroscopy, Fourier Transform Infrared , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...