Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Microbiol ; 15: 1467029, 2024.
Article in English | MEDLINE | ID: mdl-39296301

ABSTRACT

Influenza B virus (IBV) stands as a paradox, often overshadowed by its more notorious counterpart, influenza A virus (IAV). Yet, it remains a captivating and elusive subject of scientific inquiry. Influenza B is important because it causes seasonal flu outbreaks that can lead to severe respiratory illnesses, including bronchitis, pneumonia, and exacerbations of chronic conditions like asthma. Limitations in the influenza B virus's epidemiological, immunological, and etiological evolution must be addressed promptly. This comprehensive review covers evolutionary epidemiology and pathogenesis, host-virus interactions, viral isolation and propagation, advanced molecular detection assays, vaccine composition and no animal reservoir for influenza B virus. Complex viral etiology begins with intranasal transmission of influenza B virus with the release of a segmented RNA genome that attacks host cell machinery for transcription and translation within the nucleus and the release of viral progeny. Influenza B virus prevalence in domesticated and wild canines, sea mammals, and birds is frequent, yet there is no zoonosis. The periodic circulation of influenza B virus indicates a 1-3-year cycle for monophyletic strain replacement within the Victoria strain due to frequent antigenic drift in the HA near the receptor-binding site (RBS), while the antigenic stability of Yamagata viruses portrays a more conservative evolutionary pattern. Additionally, this article outlines contemporary antiviral strategies, including pharmacological interventions and vaccination efforts. This article serves as a resource for researchers, healthcare professionals, and anyone interested in the mysterious nature of the influenza B virus. It provides valuable insights and knowledge essential for comprehending and effectively countering this viral foe, which continues to pose a significant public health threat.

2.
Virol J ; 21(1): 196, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39180083

ABSTRACT

Influenza is a highly contagious acute viral illness that affects the respiratory system, posing a significant global public health concern. Influenza B virus (IBV) causes annual seasonal epidemics. The exploration of molecular biology and reverse genetics of IBV is pivotal for understanding its replication, pathogenesis, and evolution. Reverse genetics empowers us to purposefully alter the viral genome, engineer precise genetic modifications, and unveil the secrets of virulence and resistance mechanisms. It helps us in quickly analyzing new virus strains by viral genome manipulation and the development of innovative influenza vaccines. Reverse genetics has been employed to create mutant or reassortant influenza viruses for evaluating their virulence, pathogenicity, host range, and transmissibility. Without this technique, these tasks would be difficult or impossible, making it crucial for preparing for epidemics and protecting public health. Here, we bring together the latest information on how we can manipulate the genes of the influenza B virus using reverse genetics methods, most importantly helper virus-independent techniques.


Subject(s)
Influenza B virus , Influenza Vaccines , Influenza, Human , Reverse Genetics , Influenza B virus/genetics , Influenza B virus/immunology , Reverse Genetics/methods , Humans , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza, Human/virology , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Genome, Viral , Animals , Vaccine Development , Molecular Biology/methods , Virulence/genetics , Epidemics/prevention & control
3.
Heliyon ; 10(10): e30886, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38784562

ABSTRACT

Human respiratory syncytial virus (RSV) is an underlying cause of lower respiratory illnesses in children, elderly and immunocompromised adults. RSV contains multiple structural and non-structural proteins with two major glycoproteins that control the initial phase of infection, fusion glycoprotein and the attachment (G) glycoprotein. G protein attaches to the ciliated cells of airways initiating the infection. The hypervariable G protein plays a vital role in evolution of RSV strains. We employed multiple bioinformatics tools on systematically accessed large-scale data to evaluate mutations, evolutionary history, and phylodynamics of RSV. Mutational analysis of central conserved region (CCR) on G protein-coding sequences between 163 and 189 positions revealed frequent mutations at site 178 in human RSV (hRSV) A while arginine to glutamine substitutions at site 180 positions in hRSV B, remained prevalent from 2009 to 2014. Phylogenetic analysis indicates multiple signature mutations within G protein responsible for diversification of clades. The USA and China have highest number of surveillance records, followed by Kenya. Markov Chain Monte Carlo Bayesian skyline plot revealed that RSV A evolved steadily from 1990 to 2000, and rapidly between 2003 and 2005. Evolution of RSV B continued from 2003 to 2022, with a high evolution stage from 2016 to 2020. Throughout evolution, cysteine residues maintained their strict conserved states while CCR has an entropy value of 0.0039(±0.0005). This study concludes the notion that RSV G glycoprotein is continuously evolving while the CCR region of G protein maintains its conserved state providing an opportunity for CCR-specific monoclonal antibodys (mAbs) and inhibitors as potential candidates for immunoprophylaxis.

4.
J Infect Dev Ctries ; 17(6): 868-873, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37406074

ABSTRACT

INTRODUCTION: Influenza is a severe respiratory viral infection that causes significant morbidity and mortality, due to annual epidemics and unpredictable pandemics. With the extensive use of neuraminidase inhibitor (NAI) drugs, the influenza B virus has carried different drug-resistant mutations. Thus, this study aimed to analyze the prevalence of drug-resistant mutations of the influenza B virus. METHODOLOGY: Near full-length sequences of the neuraminidase (NA) region of all influenza B viruses from January 1, 2006, to December 31, 2018, were downloaded from public databases GISAID and NCBI. Multiple sequence alignments were performed using Clustal Omega 1.2.4 software. Subsequently, phylogenetic trees were constructed by FastTree 2.1.11 and clustered by ClusterPickergui_1.2.3.JAR. Then, the major drug resistance sites and surrounding auxiliary sites were analyzed by Mega-X and Weblogo tools. RESULTS: Among the amino acid sequences of NA from 2006 to 2018, only Clust04 in 2018 carried a D197N mutation of the NA active site, while other drug resistance sites were conserved without mutation. According to the Weblogo analysis, a large number of N198, S295, K373, and K375 mutations were found in the amino acid residues at the auxiliary sites surrounding D197, N294, and R374. CONCLUSIONS: We found the D197N mutation in Clust04 of the 2018 influenza B virus, with a large number of N198, S295, K373, and K375 mutations in the helper sites around N197, N294, and R374 from 2006 to 2018. NA inhibitors are currently the only kind of specific antiviral agent for the influenza B virus, although these mutations cause mild NAIs resistance.


Subject(s)
Epidemics , Influenza, Human , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Resistance, Viral/genetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Influenza B virus/genetics , Influenza B virus/metabolism , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Neuraminidase/genetics , Neuraminidase/chemistry , Neuraminidase/metabolism , Phylogeny
5.
Int J Mol Sci ; 24(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37373369

ABSTRACT

Influenza viruses are respiratory pathogens that are major threats to human health. Due to the emergence of drug-resistant strains, the use of traditional anti-influenza drugs has been hindered. Therefore, the development of new antiviral drugs is critical. In this article, AgBiS2 nanoparticles were synthesized at room temperature, using the bimetallic properties of the material itself to explore its inhibitory effect on the influenza virus. By comparing the synthesized Bi2S3 and Ag2S nanoparticles, it is found that after adding the silver element, the synthesized AgBiS2 nanoparticles have a significantly better inhibitory effect on influenza virus infection than Bi2S3 and Ag2S nanoparticles. Recent studies have shown that the inhibitory effect of AgBiS2 nanoparticles on the influenza virus mainly occurs in the stages of influenza virus-cell internalization and intracellular replication. In addition, it is found that AgBiS2 nanoparticles also have prominent antiviral properties against α and ß coronaviruses, indicating that AgBiS2 nanoparticles have significant potential in inhibiting viral activity.


Subject(s)
Influenza, Human , Nanoparticles , Orthomyxoviridae Infections , Orthomyxoviridae , Humans , Influenza, Human/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication
6.
Molecules ; 28(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298991

ABSTRACT

Polymerase chain reaction (PCR) has extensive bioanalytical applications in molecular diagnostics and genomic research studies for rapid detection and precise genomic amplification. Routine integrations for analytical workflow indicate certain limitations, including low specificity, efficiency, and sensitivity in conventional PCR, particularly towards amplifying high guanine-cytosine (GC) content. Further, there are many ways to enhance the reaction, for example, using different PCR strategies such as hot-start/touchdown PCR or adding some special modifications or additives such as organic solvents or compatible solutes, which can improve PCR yield. Due to the widespread use of bismuth-based materials in biomedicine, which have not yet been used for PCR optimization, this attracts our attention. In this study, two bismuth-based materials that are inexpensive and readily available were used to optimize GC-rich PCR. The results demonstrated that ammonium bismuth citrate and bismuth subcarbonate effectively enhanced PCR amplification of the GNAS1 promoter region (∼84% GC) and APOE (75.5% GC) gene of Homo sapiens mediated by Ex Taq DNA polymerase within the appropriate concentration range. Combining DMSO and glycerol additives was critical in obtaining the target amplicons. Thus, the solvents mixed with 3% DMSO and 5% glycerol were used in bismuth-based materials. That allowed for better dispersion of bismuth subcarbonate. As for the enhanced mechanisms, the surface interaction of PCR components, including Taq polymerase, primer, and products with bismuth-based materials, was maybe the main reason. The addition of materials can reduce the melting temperature (Tm), adsorb polymerase and modulate the amount of active polymerase in PCR, facilize the dissociation of DNA products, and enhance the specificity and efficiency of PCR. This work provided a class of candidate enhancers for PCR, deepened our understanding of the enhancement mechanisms of PCR, and also explored a new application field for bismuth-based materials.


Subject(s)
Dimethyl Sulfoxide , Glycerol , Humans , Bismuth , Solvents , Polymerase Chain Reaction/methods
7.
Molecules ; 27(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36557991

ABSTRACT

Polymerase Chain Reaction (PCR) is one of the most common technologies used to produce millions of copies of targeted nucleic acid in vitro and has become an indispensable technique in molecular biology. However, it suffers from low efficiency and specificity problems, false positive results, and so on. Although many conditions can be optimized to increase PCR yield, such as the magnesium ion concentration, the DNA polymerases, the number of cycles, and so on, they are not all-purpose and the optimization can be case dependent. Nano-sized materials offer a possible solution to improve both the quality and productivity of PCR. In the last two decades, nanoparticles (NPs) have attracted significant attention and gradually penetrated the field of life sciences because of their unique chemical and physical properties, such as their large surface area and small size effect, which have greatly promoted developments in life science and technology. Additionally, PCR technology assisted by NPs (NanoPCR) such as gold NPs (Au NPs), quantum dots (QDs), and carbon nanotubes (CNTs), etc., have been developed to significantly improve the specificity, efficiency, and sensitivity of PCR and to accelerate the PCR reaction process. This review discusses the roles of different types of NPs used to enhance PCR and summarizes their possible mechanisms.


Subject(s)
Metal Nanoparticles , Nanostructures , Nanotubes, Carbon , Quantum Dots , Metal Nanoparticles/chemistry , Polymerase Chain Reaction/methods , Gold/chemistry
8.
Nanomaterials (Basel) ; 11(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34443959

ABSTRACT

Virus infection is one of the threats to the health of organisms, and finding suitable antiviral agents is one of the main tasks of current researchers. Metal ions participate in multiple key reaction stages of organisms and maintain the important homeostasis of organisms. The application of synthetic metal-based nanomaterials as an antiviral therapy is a promising new research direction. Based on the application of synthetic metal-based nanomaterials in antiviral therapy, we summarize the research progress of metal-based nanomaterials in recent years. This review analyzes the three inhibition pathways of metal nanomaterials as antiviral therapeutic materials against viral infections, including direct inactivation, inhibition of virus adsorption and entry, and intracellular virus suppression; it further classifies and summarizes them according to their inhibition mechanisms. In addition, the use of metal nanomaterials as antiviral drug carriers and vaccine adjuvants is summarized. The analysis clarifies the antiviral mechanism of metal nanomaterials and broadens the application in the field of antiviral therapy.

10.
Front Med (Lausanne) ; 8: 626953, 2021.
Article in English | MEDLINE | ID: mdl-33614683

ABSTRACT

Objectives: To initially clarify the efficacy and tolerability of nintedanib in patients with idiopathic-inflammatory-myopathy-related interstitial lung disease (IIM-ILD). Methods: A retrospective, real-world analysis was conducted in IIM-ILD patients who regularly received outpatient visit or hospitalization from January 2018 to March 2020 in three centers. And the patients were divided into two groups depending on presence or absence of nintedanib therapy. Comparisons, Kaplan-Meier survival analysis and propensity score matching were made to identify difference in time to death from any cause, incidence of rapidly progressive interstitial lung disease (RP-ILD) and comorbidity of pulmonary infection between the two groups. The following logistic regression analyses and Cox proportional-hazard regression analyses were used to verify the therapeutic value of nintedanib as well as clinical significance of other factors. Adverse events were descriptively recorded. Results: Thirty-six patients receiving nintedanib therapy and 115 patients without use of nintedanib were included. Before and after propensity score matching, the primary comparisons revealed better survival (P = 0.015, P = 0016, respectively) and lower incidence of RP-ILD (P = 0.017, P = 0.014, respectively) in patients with nintedanib therapy. Logistic regression analysis identified that disease activity (P < 0.001), percent-predicted diffusing capacity of the lung for carbon monoxide (DLCO%, P = 0.036), nintedanib therapy (P = 0.004, OR value = 0.072) and amyopathic dermatomyositis (ADM, P = 0.012) were significantly correlated with RP-ILD. Cox proportional hazards regression analysis suggested that disease activity (P < 0.001), anti-MDA5 antibody (P < 0.001) and nintedanib therapy (P = 0.013, HR value=0.268) were significantly associated with survival of IIM-ILD patients. Similar results can also be seen in analyses after propensity score matching. In the 36 patients with nintedanib therapy, diarrhea was the most common adverse event (44.4%) and hepatic insufficiency contributed to most dosage reduction (44.4% of nine patients) or therapy discontinuation (60.0% of five patients). Conclusions: Nintedanib was found to reduce incidence of RP-ILD and improve survival in IIM-ILD patients in a real-world setting. Anti-MDA5 antibody could be taken as a risk factor for unfavorable outcome. ADM was significantly correlated with occurrence of RP-ILD. In addition to the most frequent diarrhea, hepatic insufficiency was closely related to dosage reduction or therapy discontinuation.

11.
J Immunol Res ; 2019: 6929286, 2019.
Article in English | MEDLINE | ID: mdl-31828173

ABSTRACT

OBJECTIVE: Iguratimod, a novel disease-modifying anti-rheumatic drug for the treatment of rheumatoid arthritis, has been approved in China and Japan. Here, we aimed to find whether iguratimod can inhibit the aggressive behavior and promote apoptosis of rheumatoid fibroblast-like synoviocytes (RA-FLSs). METHODS: The proliferation of RA-FLSs was assessed by 5-ethynyl-2'-deoxyuridine test and Cell Counting Kit-8. Migration and invasion were determined by the wound test and a transwell assay. Apoptosis was tested by flow cytometry. The mRNA expression of matrix metalloproteinases (MMPs) and proinflammatory cytokines in RA-FLSs were measured by quantitative PCR and ELISA. To gain insight into the molecular signaling mechanisms, we determined the effect of iguratimod on the activation of mitogen-activated protein kinases (MAPK) signaling pathways by the cellular thermal shift assay (CETSA) and western blot. RESULTS: Iguratimod treatment significantly reduced the proliferation, migration, and invasive capacities of RA-FLSs in a dose-dependent manner in vitro. MMP-1, MMP-3, MMP-9, Interleukin-6 (IL-6), and monocyte chemoattractant protein-1 mRNA and protein levels were all decreased after treatment with iguratimod. Furthermore, tumor necrosis factor-alpha- (TNF-α-) induced expression of phosphorylated c-Jun N-terminal kinases (JNK) and P38 MAPK were inhibited by iguratimod. Additionally, iguratimod promoted the apoptosis of RA-FLSs. Most importantly, iguratimod was shown to directly interact with JNK and P38 protein by CETSA assay. Moreover, activating transcription factor 2 (ATF-2), a substrate of both JNK and P38, was suppressed by iguratimod. CONCLUSIONS: Our findings suggested that the therapeutic effects of iguratimod on RA might be, in part, due to targeting the aggressive behavior and apoptosis of RA-FLSs.


Subject(s)
Antirheumatic Agents/pharmacology , Chromones/pharmacology , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Immunosuppressive Agents/pharmacology , Sulfonamides/pharmacology , Synoviocytes/drug effects , Apoptosis/drug effects , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/surgery , Cell Movement/drug effects , Cell Proliferation/drug effects , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Female , Fibroblasts/immunology , Fibroblasts/pathology , Gene Expression Regulation/immunology , Humans , Interleukin-6/genetics , Interleukin-6/immunology , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/immunology , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/immunology , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/immunology , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/immunology , Primary Cell Culture , Signal Transduction , Synovectomy , Synovial Membrane/immunology , Synovial Membrane/pathology , Synoviocytes/immunology , Synoviocytes/pathology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/pharmacology , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/immunology
12.
Oncol Lett ; 11(2): 1143-1145, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26893708

ABSTRACT

The present study describes the case of an 18-year-old adolescent male exhibiting acute lymphocytic leukemia (ALL), complicated by the onset of the symptom of sacroiliitis mimicking spondyloarthritis. Atypical features including an enlarged spleen, poor effects of non-steroidal anti-inflammatory drug therapy, low levels of hemoglobin, a low platelet count, a low neutrophil count and increased levels of monocytes, indicated the possibility of hematological malignancy. Bone marrow examination confirmed the diagnosis of ALL. The patient received chemotherapy and the symptoms were dramatically relieved. To the best of our knowledge, the current study reports the second published case of a patient with ALL presenting with sacroiliitis. Sacroiliitis as an onset manifestation of ALL may result in misdiagnosis, therefore, a differential diagnosis is essential when atypical features are present.

13.
J Immunol Res ; 2015: 534648, 2015.
Article in English | MEDLINE | ID: mdl-26380323

ABSTRACT

The activated NF-κB signaling pathway plays an important role in pathogenesis of primary Sjögren's syndrome (pSS). The inhibitor of κB (IκB) kinase (IKK) family such as IKKα, IKKß, IKKγ, and IKKε, is required for this signaling. Our aim was to investigate the role of IKKα/ß/γ/ε in patients with untreated pSS. In minor salivary glands from pSS patients, phosphorylated IKKε (pIKKε), pIκBα, and pNF-κB p65 (p-p65) were highly expressed in ductal epithelium and infiltrating mononuclear cells by immunohistochemistry, compared to healthy individuals. pIKKα/ß and pIKKγ were both negative. And pIKKε positively related to expression of p-p65. Furthermore, pIKKε and p-p65 expression significantly correlated with biopsy focus score and overall disease activity. Meanwhile, in peripheral blood mononuclear cells from pSS patients, pIKKε, total IKKε, pIKKα/ß, and p-p65 were significantly increased by western blot, compared to healthy controls. However, there was no difference in IKKγ and IκBα between pSS patients and healthy individuals. These results demonstrated an abnormality of IKKε, IκBα, and NF-κB in pSS, suggesting a potential target of treatment for pSS based on the downregulation of IKKε expression and deregulation of NF-κB pathway.


Subject(s)
I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Signal Transduction , Sjogren's Syndrome/immunology , Sjogren's Syndrome/metabolism , Adult , Biopsy , Cohort Studies , Epithelium/metabolism , Female , Gene Expression , Humans , I-kappa B Kinase/genetics , Immunohistochemistry , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Male , Middle Aged , NF-kappa B/genetics , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL