Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(10): e2107357119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35238644

ABSTRACT

The Food and Drug Administration­approved drug sirolimus, which inhibits mechanistic target of rapamycin (mTOR), is the leading candidate for targeting aging in rodents and humans. We previously demonstrated that sirolimus could treat ARHL in mice. In this study, we further demonstrate that sirolimus protects mice against cocaine-induced hearing loss. However, using efficacy and safety tests, we discovered that mice developed substantial hearing loss when administered high doses of sirolimus. Using pharmacological and genetic interventions in murine models, we demonstrate that the inactivation of mTORC2 is the major driver underlying hearing loss. Mechanistically, mTORC2 exerts its effects primarily through phosphorylating in the AKT/PKB signaling pathway, and ablation of P53 activity greatly attenuated the severity of the hearing phenotype in mTORC2-deficient mice. We also found that the selective activation of mTORC2 could protect mice from acoustic trauma and cisplatin-induced ototoxicity. Thus, in this study, we discover a function of mTORC2 and suggest that its therapeutic activation could represent a potentially effective and promising strategy to prevent sensorineural hearing loss. More importantly, we elucidate the side effects of sirolimus and provide an evaluation criterion for the rational use of this drug in a clinical setting.


Subject(s)
Hearing Loss, Sensorineural/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Signal Transduction , Animals , Disease Models, Animal , Hearing Loss, Sensorineural/chemically induced , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/prevention & control , Mechanistic Target of Rapamycin Complex 2/genetics , Mice , Mice, Knockout , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Sirolimus/adverse effects , Sirolimus/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
2.
Mol Neurobiol ; 58(9): 4376-4391, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34014435

ABSTRACT

The transport system in cochlear hair cells (HCs) is important for their function, and the kinesin family of proteins transports numerous cellular cargos via the microtubule network in the cytoplasm. Here, we found that Klc2 (kinesin light chain 2), the light chain of kinesin-1 that mediates cargo binding and regulates kinesin-1 motility, is essential for cochlear function. We generated mice lacking Klc2, and they suffered from low-frequency hearing loss as early as 1 month of age. We demonstrated that deficiency of Klc2 resulted in abnormal transport of mitochondria and the down-regulation of the GABAA receptor family. In addition, whole-genome sequencing (WGS) of patient showed that KLC2 was related to low-frequency hearing in human. Hence, to explore therapeutic approaches, we developed adeno-associated virus containing the Klc2 wide-type cDNA sequence, and Klc2-null mice delivered virus showed apparent recovery, including decreased ABR threshold and reduced out hair cell (OHC) loss. In summary, we show that the kinesin transport system plays an indispensable and special role in cochlear HC function in mice and human and that mitochondrial localization is essential for HC survival.


Subject(s)
Hair Cells, Auditory/metabolism , Hearing Loss, Sensorineural/genetics , Kinesins/genetics , Animals , Hearing Loss, Sensorineural/metabolism , Humans , Kinesins/metabolism , Mice , Mice, Knockout , Microtubules/metabolism , Mitochondria/metabolism
3.
Front Cell Dev Biol ; 9: 630361, 2021.
Article in English | MEDLINE | ID: mdl-33693002

ABSTRACT

Endolymphatic potential (EP) is the main driving force behind the sensory transduction of hearing, and K+ is the main charge carrier. Kir5.1 is a K+ transporter that plays a significant role in maintaining EP homeostasis, but the expression pattern and role of Kir5.1 (which is encoded by the Kcnj16 gene) in the mouse auditory system has remained unclear. In this study, we found that Kir5.1 was expressed in the mouse cochlea. We checked the inner ear morphology and measured auditory function in Kcnj16 -/- mice and found that loss of Kcnj16 did not appear to affect the development of hair cells. There was no significant difference in auditory function between Kcnj16 -/- mice and wild-type littermates, although the expression of Kcnma1, Kcnq4, and Kcne1 were significantly decreased in the Kcnj16 -/- mice. Additionally, no significant differences were found in the number or distribution of ribbon synapses between the Kcnj16 -/- and wild-type mice. In summary, our results suggest that the Kcnj16 gene is not essential for auditory function in mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...