Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 89(5): 2716-2729, 2024 May.
Article in English | MEDLINE | ID: mdl-38517026

ABSTRACT

Marselan is a red wine grape variety with great brewing prospects. The aim of this study was to investigate the effect of postharvest indoor dehydration on the quality of Marselan grapes. For two consecutive years, the harvested grapes were dehydrated naturally indoors (24-28°C). Fresh grapes were used as a control, and dehydrated samples were taken every 7 days during the period of dehydration until ending at day 28. Dehydration treatment increased degrees Brix, reducing sugars, glycerol, and malic acid. On day 7, there was an increase in protocatechuic acid, p-coumaric acid, and total tannin of 26.00%-27.73%, 11.43%-52.52%, and 39.74%-70.45%, respectively. With increasing dehydration time, total phenols, total flavonoids and total flavanols in the skins were decreased by 17.05%-38.13%, 24.32%-57.38%, and 17.05%-59.48%, respectively, with an increase in pH, citric acid, and ascorbic acid contents of grape juice by 7.66%-21.43%, 100%-137.50%, and 61.29%-258.82%, respectively. On day 21, the esters were increased by 1.10-1.75 factors. Partial least square-discriminant analysis result of volatile compounds showed that ethyl acetate, 1-propanol, 1-propanol, 2-methyl-, 1-hexanol, and 1-butanol, 3-methyl- were the predominant characteristic flavor compounds during dehydration of Marselan grapes. The effect of indoor dehydration on Marselan grape quality offered application value for China's later dehydration wine production.


Subject(s)
Fruit , Phenols , Vitis , Wine , Vitis/chemistry , China , Fruit/chemistry , Wine/analysis , Phenols/analysis , Flavonoids/analysis , Desiccation/methods , Tannins/analysis , Volatile Organic Compounds/analysis
2.
Food Chem ; 445: 138745, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38364500

ABSTRACT

In this study, acidity was regulated with the addition of exogenous tartaric acid and citric acid before bottling. The effect of exogenous organic acids on chemical compositions and sensory attributes of fortified sweet wines from dehydrated grapes were investigated. The results indicated that exogenous organic acids promoted the conversion of monomeric anthocyanins to copigmented anthocyanins in wines. Specifically, the combination of malvidin-3-O-glucoside and flavanols (catechin and epicatechin) was facilitated to form copigmented anthocyanins. Sensory analysis suggested that exogenous organic acids improved the balance of sugar and acidity and benefited the harmony in wines on the taste. Wines with a residual sugar and titratable acidity ratio of about 11:1 exhibited the more harmonious taste. In addition, it was also observed changes in the aroma profile related to volatile compounds, namely, more intense fruity aroma in wines with the addition of organic acids.


Subject(s)
Vitis , Volatile Organic Compounds , Wine , Vitis/chemistry , Wine/analysis , Anthocyanins/analysis , Taste , Phenols/analysis , Odorants/analysis , Carbohydrates/analysis , Sugars/analysis , Volatile Organic Compounds/analysis
3.
Front Plant Sci ; 14: 1182977, 2023.
Article in English | MEDLINE | ID: mdl-37351207

ABSTRACT

Lanzhou lily (Lilium davidii var. unicolor) is a renowned edible crop produced in China and relatively sensitive to high temperature (HT). Trichokonins (TKs) are antimicrobial peptaibols secreted from Trichoderma longibrachiatum strain SMF2. Here, we report that TKs application improves the thermotolerance of Lanzhou lily. The activity of the antioxidant enzyme system (SOD, CAT, and POD), the level of heat-resistance-associated phytohormones (ABA, SA, and JA), the relative water content (RWC), the content of chlorophyll (Chl), and the net photosynthetic rate (P n) were promoted by TKs treatment in Lanzhou lily plants subjected to heat stress (HS). TKs treatment also mitigated cell injury as shown by a lower accumulation of malondialdehyde (MDA) and relative electrolyte leakage (REL) under HS conditions. RNA-seq data analysis showed that more than 4.5 times differentially expressed genes (DEGs) responded to TKs treatment under HS compared to non-HS, and TKs treatment reduced protein folding and enhanced cellular repair function under HS conditions. The analyses of DEGs involved in hormone (ABA, SA and JA) synthesis and signaling pathways suggested that TKs might improve Lanzhou lily heat tolerance by promoting ABA synthesis and signal transduction. TKs highly induced DEGs of the HSF-HSP pathway under HS, in which HSFA2 accounted for most of the HSF family. Furthermore, TKs treatment resulted in the upregulation of heat-protective genes LzDREB2B, LzHsfA2a, LzMBF1c, LzHsp90, and LzHsp70 involved in HSF-HSP signal pathway after long-term HS. LzHsfA2a-1 likely plays a key role in acquisition of TKs-induced thermotolerance of Lanzhou lily as evidenced by the sustained response to HS, the enhanced response to TKs treatment under long-term HS, and the high sequence similarity to LlHsfA2a which is a key regulator for the improvement of heat tolerance in Lilium longiflorum. Our results reveal the underlying mechanisms of TKs-mediated thermotolerance in Lanzhou lily and highlight an attractive approach to protecting crop plants from damage caused by HS in a global warming future.

4.
Food Chem X ; 16: 100501, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36519088

ABSTRACT

Yan 73 anthocyanin extracts and spine grape anthocyanin extracts, along with anthocyanin standards (malvidin-3-O-glucoside; malvidin-3,5-O-diglucoside), were used to investigate the role of anthocyanins and their structures (monoglucoside, diglucoside) on intestinal microbiota. The results showed that anthocyanins (especially monoglucoside) increased the alpha diversity and abundance of Bifidobacterium, Faecalibacterium, and Prevotella. Yan 73 anthocyanin extracts particularly promoted the growth of Lactobacillus and decreased Streptococcus abundance, while malvidin-3,5-O-diglucoside suppressed the proliferation of Escherichia-Shigella. The pH value was lower in anthocyanin extracts than in the standards. Short-chain fatty acid contents were higher in diglycososide anthocyanins than in monoglycoside. The results of scanning electron microscopic images suggested that anthocyanins might change bacterial cell morphology to exhibit antibacterial activity. Consequently, anthocyanins with different structures showed dynamic and multiple regulatory effects on intestinal microbiota for maintaining intestinal health through promoting short-chain fatty acids, lowering pH, and/or damaging bacterial cell morphology.

SELECTION OF CITATIONS
SEARCH DETAIL
...