Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Nat Commun ; 15(1): 3901, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724505

ABSTRACT

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Subject(s)
Cytoplasm , NF-KappaB Inhibitor alpha , NF-kappa B , Protein-Tyrosine Kinases , Transcription Factor RelA , Animals , Phosphorylation , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Mice , Transcription Factor RelA/metabolism , Humans , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , NF-kappa B/metabolism , Cytoplasm/metabolism , Proteolysis , Cell Nucleus/metabolism , Virus Replication , HEK293 Cells , Signal Transduction , Mice, Inbred C57BL , Cytokines/metabolism , Active Transport, Cell Nucleus , Protein Serine-Threonine Kinases
2.
BMC Plant Biol ; 24(1): 316, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654195

ABSTRACT

BACKGROUND: Salt stress significantly reduces soybean yield. To improve salt tolerance in soybean, it is important to mine the genes associated with salt tolerance traits. RESULTS: Salt tolerance traits of 286 soybean accessions were measured four times between 2009 and 2015. The results were associated with 740,754 single nucleotide polymorphisms (SNPs) to identify quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs) using three-variance-component multi-locus random-SNP-effect mixed linear model (3VmrMLM). As a result, eight salt tolerance genes (GmCHX1, GsPRX9, Gm5PTase8, GmWRKY, GmCHX20a, GmNHX1, GmSK1, and GmLEA2-1) near 179 significant and 79 suggested QTNs and two salt tolerance genes (GmWRKY49 and GmSK1) near 45 significant and 14 suggested QEIs were associated with salt tolerance index traits in previous studies. Six candidate genes and three gene-by-environment interactions (GEIs) were predicted to be associated with these index traits. Analysis of four salt tolerance related traits under control and salt treatments revealed six genes associated with salt tolerance (GmHDA13, GmPHO1, GmERF5, GmNAC06, GmbZIP132, and GmHsp90s) around 166 QEIs were verified in previous studies. Five candidate GEIs were confirmed to be associated with salt stress by at least one haplotype analysis. The elite molecular modules of seven candidate genes with selection signs were extracted from wild soybean, and these genes could be applied to soybean molecular breeding. Two of these genes, Glyma06g04840 and Glyma07g18150, were confirmed by qRT-PCR and are expected to be key players in responding to salt stress. CONCLUSIONS: Around the QTNs and QEIs identified in this study, 16 known genes, 6 candidate genes, and 8 candidate GEIs were found to be associated with soybean salt tolerance, of which Glyma07g18150 was further confirmed by qRT-PCR.


Subject(s)
Gene-Environment Interaction , Genes, Plant , Glycine max , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Salt Tolerance , Glycine max/genetics , Glycine max/physiology , Salt Tolerance/genetics , Quantitative Trait Loci/genetics , Phenotype
3.
Plant Commun ; 5(7): 100891, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38561965

ABSTRACT

Plants that grow in extreme environments represent unique sources of stress-resistance genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic evergreen broadleaf shrub native to semi-arid and desert regions; however, its drought-tolerance mechanisms remain poorly understood. Here, we report the assembly of a reference-grade genome for A. mongolicus, describe its evolutionary history within the legume family, and examine its drought-tolerance mechanisms. The assembled genome is 843.07 Mb in length, with 98.7% of the sequences successfully anchored to the nine chromosomes of A. mongolicus. The genome is predicted to contain 47 611 protein-coding genes, and 70.71% of the genome is composed of repetitive sequences; these are dominated by transposable elements, particularly long-terminal-repeat retrotransposons. Evolutionary analyses revealed two whole-genome duplication (WGD) events at 130 and 58 million years ago (mya) that are shared by the genus Ammopiptanthus and other legumes, but no species-specific WGDs were found within this genus. Ancestral genome reconstruction revealed that the A. mongolicus genome has undergone fewer rearrangements than other genomes in the legume family, confirming its status as a "relict plant". Transcriptomic analyses demonstrated that genes involved in cuticular wax biosynthesis and transport are highly expressed, both under normal conditions and in response to polyethylene glycol-induced dehydration. Significant induction of genes related to ethylene biosynthesis and signaling was also observed in leaves under dehydration stress, suggesting that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Ectopic expression of AmERF2, an ethylene response factor unique to A. mongolicus, can markedly increase the drought tolerance of transgenic Arabidopsis thaliana plants, demonstrating the potential for application of A. mongolicus genes in crop improvement.


Subject(s)
Droughts , Fabaceae , Genome, Plant , Fabaceae/genetics , Fabaceae/physiology , Stress, Physiological/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Phylogeny
4.
Clin Interv Aging ; 19: 313-322, 2024.
Article in English | MEDLINE | ID: mdl-38404479

ABSTRACT

Background: The lung ultrasound score was developed for rapidly assessing the extent of lung ventilation, and it can predict failure to wean various types of patients off mechanical ventilation. Whether it is also effective for COVID-19 patients is unclear. Methods: This single-center, prospective, observational study was conducted to assess the ability of the 12-region lung ultrasound score to predict failure to wean COVID-19 patients off ventilation. In parallel, we assessed whether right hemidiaphragmatic excursion or previously published predictors of weaning failure can apply to these patients. Predictive ability was assessed in terms of the area under the receiver operating characteristic curve (AUC). Results: The mean age of the 35 patients in the study was (75 ± 9) years and 12 patients (37%) could not be weaned off mechanical ventilation. The lung ultrasound score predicted these failures with an AUC of 0.885 (95% CI 0.770-0.999, p < 0.001), and a threshold score of 10 provided specificity of 72.7% and sensitivity of 92.3%. AUCs were lower for previously published predictors of weaning failure, and right hemidiaphragmatic excursion did not differ significantly between the two groups. Conclusion: The lung ultrasound score can accurately predict failure to wean critically ill COVID-19 patients off mechanical ventilation, whereas assessment of right hemidiaphragmatic excursion does not appear helpful in this regard. Trial Registration: https://clinicaltrials.gov/ct2/show/NCT05706441.


Subject(s)
COVID-19 , Respiration, Artificial , Humans , Aged , Aged, 80 and over , Ventilator Weaning , Prospective Studies , Predictive Value of Tests , Lung/diagnostic imaging
5.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1834-1844, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37694467

ABSTRACT

Nitrogen deposition and summer precipitation in eastern Inner Mongolia are predicted to increase in recent decades. However, such increases in nitrogen inputs and precipitation may not be continuous under the future new patterns of global change, with the direction and magnitude of which may change or weaken. The legacy effects of nitrogen and water addition after cessation on ecosystems are still unclear. Based on a 13-year nitrogen and water addition experiment in temperate grassland of northern China, we examined the short-term (2 years) legacy effects of historical nitrogen and water addition on soil physicochemical properties and microbial properties after the cessation of nitrogen and water addition in the 14th year. The results showed that the positive effects of historical nitrogen addition on most of soil nutrient variables diminished after two years of cessation, including ammonium nitrogen, nitrate nitrogen, dissolved organic carbon and nitrogen, and Olsen-P concentrations. In contrast, there were legacy effects on soil microbial characteristics. For example, the historical nitrogen input of 15 g N·m-2·a-1 reduced microbial biomass carbon, respiration, and alkaline phosphomonoesterase activity by 73.3%, 81.9%, and 70.3% respectively. It implied that microbial parameters restored slowly in comparison with soil nutrients, showing a hysteresis effect. Results of Pearson's correlation and redundancy analysis showed that the legacy effects of historical nitrogen addition on microbial parameters could be attributed to the negative effects of nitrogen addition on soil pH. Historical water addition showed significant legacy effects on soil pH, ammonium nitrogen, dissolved organic carbon and nitrogen, respiration, and soil enzyme activities, which significantly interacted with historical nitrogen addition. These results are of great significance to predict the changes in grassland ecosystem functions and services under the local environmental improvement conditions, and to reveal the restoration mechanism of degraded grassland.


Subject(s)
Dissolved Organic Matter , Nitrogen , Ecosystem , Grassland , Carbon , Soil , Water
6.
Front Microbiol ; 14: 1125709, 2023.
Article in English | MEDLINE | ID: mdl-36876106

ABSTRACT

Introduction: The expanded granular sludge bed (EGSB) is a major form of anaerobic digestion system during wastewater treatment. Yet, the dynamics of microbial and viral communities and members functioning in nitrogen cycling along with monthly changing physicochemical properties have not been well elucidated. Methods: Here, by collecting the anaerobic activated sludge samples from a continuously operating industrial-scale EGSB reactor, we conducted 16S rRNA gene amplicon sequencing and metagenome sequencing to reveal the microbial community structure and variation with the ever-changing physicochemical properties along within a year. Results: We observed a clear monthly variation of microbial community structures, while COD, the ratio of volatile suspended solids (VSS) to total suspended solids (TSS) (VSS/TSS ratio), and temperature were predominant factors in shaping community dissimilarities examined by generalized boosted regression modeling (GBM) analysis. Meanwhile, a significant correlation was found between the changing physicochemical properties and microbial communities (p <0.05). The alpha diversity (Chao1 and Shannon) was significantly higher (p <0.05) in both winter (December, January, and February) and autumn (September, October, and November) with higher organic loading rate (OLR), higher VSS/TSS ratio, and lower temperature, resulting higher biogas production and nutrition removal efficiency. Further, 18 key genes covering nitrate reduction, denitrification, nitrification, and nitrogen fixation pathways were discovered, the total abundance of which was significantly associated with the changing environmental factors (p <0.05). Among these pathways, the dissimilatory nitrate reduction to ammonia (DNRA) and denitrification had the higher abundance contributed by the top highly abundant genes narGH, nrfABCDH, and hcp. The COD, OLR, and temperature were primary factors in affecting DNRA and denitrification by GBM evaluation. Moreover, by metagenome binning, we found the DNRA populations mainly belonged to Proteobacteria, Planctomycetota, and Nitrospirae, while the denitrifying bacteria with complete denitrification performance were all Proteobacteria. Besides, we detected 3,360 non-redundant viral sequences with great novelty, in which Siphoviridae, Podoviridae, and Myoviridae were dominant viral families. Interestingly, viral communities likewise depicted clear monthly variation and had significant associations with the recovered populations (p <0.05). Discussion: Our work highlights the monthly variation of microbial and viral communities during the continuous operation of EGSB affected by the predominant changing COD, OLR, and temperature, while DNRA and denitrification pathways dominated in this anaerobic system. The results also provide a theoretical basis for the optimization of the engineered system.

7.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(2): 193-201, 2023 Feb 15.
Article in Chinese | MEDLINE | ID: mdl-36854697

ABSTRACT

OBJECTIVES: To study the protective effect of breviscapine against brain injury induced by intrauterine inflammation in preterm rats and its mechanism. METHODS: A preterm rat model of brain injury caused by intrauterine inflammation was prepared by intraperitoneal injections of lipopolysaccharide in pregnant rats. The pregnant rats and preterm rats were respectively randomly divided into 5 groups: control, model, low-dose breviscapine (45 mg/kg), high-dose breviscapine (90 mg/kg), and high-dose breviscapine (90 mg/kg)+ML385 [a nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, 30 mg/kg] (n=10 each). The number and body weight of the live offspring rats were measured for each group. Hematoxylin-eosin staining was used to observe the pathological morphology of the uterus and placenta of pregnant rats and the pathological morphology of the brain tissue of offspring rats. Immunofluorescent staining was used to measure the co-expression of ionized calcium binding adaptor molecule-1 (IBA-1) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex of offspring rats. ELISA was used to measure the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1ß (IL-1ß) in the brain tissue of offspring rats. Western blotting was used to measure the expression of Nrf2 pathway-related proteins in the brain tissue of offspring rats. RESULTS: Pathological injury was found in the uterus, and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, and severe microglia pyroptosis occurred in the cerebral cortex of the offspring rats in the model group. Compared with the control group, the model group had significant reductions in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and heme oxygenase-1 (HO-1) in the brain tissue of the offspring rats (P<0.05), but significant increases in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1ß, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). Compared with the model group, the breviscapine administration groups showed alleviated pathological injury of the uterus and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, significant increases in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and HO-1 in the brain tissue of the offspring rats (P<0.05), and significant reductions in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1ß, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). The high-dose breviscapine group had a significantly better effect than the low-dose breviscapine (P<0.05). ML385 significantly inhibited the intervention effect of high-dose breviscapine (P<0.05). CONCLUSIONS: Breviscapine can inhibit inflammatory response in brain tissue of preterm rats caused by intrauterine inflammation by activating the Nrf2 pathway, and it can also inhibit microglial pyroptosis and alleviate brain injury.


Subject(s)
Brain Injuries , Flavonoids , Inflammation , Animals , Female , Pregnancy , Rats , Body Weight , Brain Injuries/drug therapy , Brain Injuries/etiology , Brain Injuries/prevention & control , Caspase 1 , Inflammation/complications , Inflammation/drug therapy , Interleukin-6 , Interleukin-8 , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Flavonoids/therapeutic use
8.
Water Sci Technol ; 87(1): 130-143, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36640028

ABSTRACT

Methanol has a significant effect on the performance of the completely autotrophic nitrogen removal over the nitrite (CANON) process. In this research, the effect of low-concentration methanol on the functional microorganisms and nitrogen removal and recovery in the CANON system is investigated. The result shows that the anaerobic ammonium-oxidizing bacteria (AnAOB) was suppressed with low-concentration methanol addition, and the phylum Planctomycetes was hidden. The genus Candidatus Brocadia was restrained, and the relative abundances reduced from 25.5 to 15.0% in the upper biofilm and from 20.3 to 14.3% in the bottom biofilm, respectively. However, low-concentration methanol promoted the nitrifying oxidizing bacteria (NOB) activity. This phenomenon reduced the average ammonium nitrogen removal rate from 95.0 to 70.7%, and the average total nitrogen removal rate decreased from 81.3 to 43.6%, respectively. The results demonstrated that the low-concentration methanol as an organic carbon matter harmed the CANON process. Fortunately, the CANON system had an excellent self-healing ability when the methanol was stopped, with the average ammonium nitrogen removal rate and total nitrogen removal rate returning to 95.5 and 80.9%, respectively. This research supplies a reference for practical engineering design and application by improving the understanding of the effects of low-concentration methanol on CANON process performance.


Subject(s)
Ammonium Compounds , Nitrites , Methanol , Nitrogen , Denitrification , Bioreactors/microbiology , Autotrophic Processes
9.
Chin Med Sci J ; 38(1): 11-19, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36100585

ABSTRACT

Objective To investigate the impact of microvascular obstruction (MVO) on the global and regional myocardial function by cardiac magnetic resonance feature-tracking (CMR-FT) in ST-segment-elevation myocardial infarction (STEMI) patients after percutaneous coronary intervention.Methods Consecutive acute STEMI patients who underwent cardiac magnetic resonance imaging 1 - 7 days after successful reperfusion by percutaneous coronary intervention treatment were included in this retrospective study. Based on the presence or absence of MVO on late gadolinium enhancement images, patients were divided into groups with MVO and without MVO. The infarct zone, adjacent zone, and remote zone were determined based on a myocardial 16-segment model. The radial strain (RS), circumferential strain (CS), and longitudinal strain (LS) of the global left ventricle (LV) and the infarct, adjacent, and remote zones were measured by CMR-FT from cine images and compared between patients with and without MVO using independent-samples t-test. Logistic regression analysis was used to assess the association of MVO with the impaired LV function.Results A total of 157 STEMI patients (mean age 56.66 ± 11.38 years) were enrolled. MVO was detected in 37.58% (59/157) of STEMI patients, and the mean size of MVO was 3.00 ±3.76 mL. Compared with patients without MVO (n =98 ), the MVO group had significantly reduced LV global RS (t= -4.30, P < 0.001), global CS (t= 4.99, P < 0.001), and global LS ( t= 3.51, P = 0.001). The RS and CS of the infarct zone in patients with MVO were significantly reduced (t= -3.38, P = 0.001; t= 2.64, P = 0.01; respectively) and the infarct size was significantly larger (t= 8.37, P < 0.001) than that of patients without MVO. The presence of LV MVO [OR= 4.10, 95%CI: 2.05 - 8.19, P<0.001) and its size [OR=1.38, 95%CI: 1.10-1.72, P=0.01], along with the heart rate and LV infarct size were significantly associated with impaired LV global CS in univariable Logistic regression analysis, while only heart rate (OR=1.08, 95%CI: 1.03 - 1.13, P=0.001) and LV infarct size (OR=1.10, 95%CI: 1.03 - 1.16, P=0.003) were independent influencing factors for the impaired LV global CS in multivariable Logistic regression analysis.Conclusion The infarct size was larger in STEMI patients with MVO, and MVO deteriorates the global and regional LV myocardial function.


Subject(s)
Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , Middle Aged , Aged , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/complications , Contrast Media , Retrospective Studies , Gadolinium , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
10.
Mol Cell Biochem ; 478(4): 835-850, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36107285

ABSTRACT

Emerging numbers of endogenous circular RNAs (circRNAs) have gained much attention to serve as essential regulators in the carcinogenesis of human cancers. Unfortunately, the occurrence of paclitaxel (PTX) resistance to ovarian cancer remains to be responsible for the poor prognosis. Herein, the aim of our study is to reveal a dysregulation of a particular circRNA, circANKRD17 (has_circ_0007883), and its exact role involving in chemoresistance of ovarian cancer. Expression patterns of circANKRD17 in PTX-resistant ovarian cancer tissues and cell lines was examined using quantitative real-time PCR analysis. Role of circANKRD17 on drug resistance and cell viability was evaluated by CCK-8 assay. Colony formation was subjected to measure cell proliferation. Flow cytometry was employed to evaluate cell cycle either or cell apoptosis. Xenograft models were constructed for further in vivo confirmation. The cicrANKRD17/FUS/FOXR2 axis was demonstrated using bioinformatics analysis, RNA pull-down, as well as RNA immunoprecipitation assays. Dramatically high expressed circANKRD17 observed in ovarian cancer tissues and cells was correlated with PTX resistance, which indicated the poor prognosis. Functionally, knockdown of circANKRD17 decreased PTX resistance via inhibiting cell viability and inducing cell apoptosis. Mechanistically, circANKRD17 interacted with the RNA-binding protein, fused in sarcoma (FUS) to stabilize FOXR2. In summary, our study uncovered a novel machinery of circANKRD17/FUS/FOXR2 referring to ovarian cancer drug sensitivity and tumorigenesis, highlighting a potential strategy for circRNAs in chemoresistance.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Humans , Female , Paclitaxel/pharmacology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , RNA, Circular/genetics , Carcinogenesis , Cell Transformation, Neoplastic , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Forkhead Transcription Factors , RNA-Binding Protein FUS
11.
Cancer Med ; 12(3): 2417-2426, 2023 02.
Article in English | MEDLINE | ID: mdl-35880556

ABSTRACT

BACKGROUND: Chemotherapy with docetaxel, cisplatin, and fluorouracil (TPF) has been studied in patients with head and neck cancer. Its impact on patients with oral cavity cancer was not specified. METHODS: We consecutively reviewed medical files of patients with untreated oral cavity cancer who received neoadjuvant TPF chemotherapy in our department from January 2017 to April 2020. Outcomes included the objective response to TPF chemotherapy, factors associated with the response, and progression and survival in different response groups. RESULTS: A total of 167 patients were included, with half of stage IV disease. Complete or partial response was observed in 51 patients. A total of 91 patients had stable disease, and 25 patients had progressive disease. The response was not associated with age, sex, anatomic subsite, and the tumor's T stage. It was related with N stage (p < 0.001) and clinical stage (p = 0.004). Most patients with bulky nodes or nodes with obvious necrosis showed low response or even progressed after neoadjuvant TPF chemotherapy. The planned surgery was conducted in 159 patients. Disease relapse mostly occurred in 2 years after treatment. The 2-year overall survival and the progression-free survival were 89.0% and 85.2% for patients with complete or partial response, 62.4% and 55.6% for patients with stable disease, and 12.5% and 4.2% for patients with progressive disease, respectively. CONCLUSIONS: The response of neoadjuvant TPF chemotherapy in patients with oral cavity cancer is related to disease stage, especially the nodal stage. Patients with complete or partial response developed less progression events and better survival.


Subject(s)
Head and Neck Neoplasms , Mouth Neoplasms , Humans , Docetaxel , Cisplatin/therapeutic use , Neoadjuvant Therapy , Taxoids , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Fluorouracil , Head and Neck Neoplasms/drug therapy , Mouth Neoplasms/drug therapy , Induction Chemotherapy
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-971059

ABSTRACT

OBJECTIVES@#To study the protective effect of breviscapine against brain injury induced by intrauterine inflammation in preterm rats and its mechanism.@*METHODS@#A preterm rat model of brain injury caused by intrauterine inflammation was prepared by intraperitoneal injections of lipopolysaccharide in pregnant rats. The pregnant rats and preterm rats were respectively randomly divided into 5 groups: control, model, low-dose breviscapine (45 mg/kg), high-dose breviscapine (90 mg/kg), and high-dose breviscapine (90 mg/kg)+ML385 [a nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, 30 mg/kg] (n=10 each). The number and body weight of the live offspring rats were measured for each group. Hematoxylin-eosin staining was used to observe the pathological morphology of the uterus and placenta of pregnant rats and the pathological morphology of the brain tissue of offspring rats. Immunofluorescent staining was used to measure the co-expression of ionized calcium binding adaptor molecule-1 (IBA-1) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex of offspring rats. ELISA was used to measure the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β) in the brain tissue of offspring rats. Western blotting was used to measure the expression of Nrf2 pathway-related proteins in the brain tissue of offspring rats.@*RESULTS@#Pathological injury was found in the uterus, and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, and severe microglia pyroptosis occurred in the cerebral cortex of the offspring rats in the model group. Compared with the control group, the model group had significant reductions in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and heme oxygenase-1 (HO-1) in the brain tissue of the offspring rats (P<0.05), but significant increases in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1β, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). Compared with the model group, the breviscapine administration groups showed alleviated pathological injury of the uterus and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, significant increases in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and HO-1 in the brain tissue of the offspring rats (P<0.05), and significant reductions in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1β, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). The high-dose breviscapine group had a significantly better effect than the low-dose breviscapine (P<0.05). ML385 significantly inhibited the intervention effect of high-dose breviscapine (P<0.05).@*CONCLUSIONS@#Breviscapine can inhibit inflammatory response in brain tissue of preterm rats caused by intrauterine inflammation by activating the Nrf2 pathway, and it can also inhibit microglial pyroptosis and alleviate brain injury.


Subject(s)
Animals , Female , Pregnancy , Rats , Body Weight , Brain Injuries/prevention & control , Caspase 1 , Inflammation/drug therapy , Interleukin-6 , Interleukin-8 , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Flavonoids/therapeutic use
13.
World J Gastrointest Oncol ; 15(12): 2101-2110, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38173426

ABSTRACT

BACKGROUND: Transversus abdominis plane block (TAPB) is a block of the abdominal afferent nerve fibers between the internal oblique muscle and the transverse abdominal muscle achieved with local anesthetics. It can effectively block the conduction of the anterior nerve of the abdominal wall and exert a good analgesic effect. However, the effect of combining the block with remimazolam on anesthesia in patients undergoing gastrointestinal tumor surgery is still unclear. AIM: To examine the effects of combining TAPB with remimazolam on the stress response and postoperative recovery of gastrointestinal tumor surgery patients. METHODS: A retrospective analysis was conducted on the clinical data of 102 individuals diagnosed with gastrointestinal malignancies who underwent laparoscopic surgery under general anesthesia between April 2020 and June 2023. The patients were categorized into a control group (n = 51), receiving remimazolam for general anesthesia, and an observation group (n = 51), receiving TAPB combined with remimazolam for general anesthesia. A comparison was made between both groups in terms of hemodynamic parameters, stress markers, pain levels, recovery quality, analgesic effects, and adverse reactions during the perioperative period. RESULTS: The observation group had significantly higher heart rates at time points 1 min after induction and upon leaving the operating room than the control group (P < 0.05). The mean arterial pressure at time point T1 in the observation group was significantly higher than that in the control group (P < 0.05). Five minutes after extubation, the levels of the hormones adrenaline and noradrenaline in the observation group were considerably lower than those in the control group (P < 0.05). At 12 h, 24 h, and 48 h following surgery, the visual analog scale scores of the observation group were considerably lower than those of the control group (P < 0.05). The observation group had shorter awakening and extubation times and lower Riker sedation-agitation scale scores than the control group (P < 0.05). The observation group exhibited considerably fewer effective pump presses, lower fentanyl dosages, and lower incidences of rescue analgesia within 24 h following surgery than the control group (P < 0.05). CONCLUSION: The application effect of TAPB combined with remimazolam general anesthesia in anesthesia of patients undergoing gastrointestinal tumor surgery is good, which is helpful to promote faster recovery after operation.

14.
J Hazard Mater ; 438: 129565, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35999750

ABSTRACT

Membrane separation based on smart materials with responsive wettability has attracted great attention due to the excellent performance of controllable oil-water separation. Herein, responsive copolymer originated from N-isopropylacrylamide and 2-(dimethylamino) ethyl methacrylate was synthesized and electrospun with polyacrylonitrile to fabricate smart composite membrane. The introduction of the responsive copolymer endowed the membrane with stimuli-responsive wettability to pH and temperature. Specifically, at the initial state, water was selectively blocked while oil passed through the membrane. After treatment with acidic water or CO2, the reverse separation was realized due to the protonation of the tertiary amine group in the copolymer. Water was selectively passed through the membrane after heat treatment because of the structural change of membrane upon temperature. The developed membrane was able to separate different types of oil-water mixtures and surfactant-stabled emulsions with high efficiency. Additionally, two membranes controlled by temperature and pH were designed to construct a logic AND gate for oil-water separation, and the results demonstrated that only the temperature and acidity of the solution were simultaneously satisfied, the water could flow through the valve combination, and such capability made this smart membrane great potential for remotely controlling the oil-water separation process.


Subject(s)
Acrylic Resins , Oils , Oils/chemistry , Polymers/chemistry , Water/chemistry , Wettability
15.
Brain Sci ; 12(4)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35448013

ABSTRACT

This study investigated the characteristics of cognitive impairment in patients with white matter lesions (WMLs) caused by cerebral small vessel disease and the corresponding changes in WM microstructures. Diffusion tensor imaging (DTI) data of 50 patients with WMLs and 37 healthy controls were collected. Patients were divided into vascular cognitive impairment non-dementia and vascular dementia groups. Tract-based spatial statistics showed that patients with WMLs had significantly lower fractional anisotropy (FA) and higher mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) values throughout the WM areas but predominately in the forceps minor, forceps major (FMA), bilateral corticospinal tract, inferior fronto-occipital fasciculus, superior longitudinal fasciculus, inferior longitudinal fasciculus (ILF), and anterior thalamic radiation, compared to the control group. These fiber bundles were selected as regions of interest. There were significant differences in the FA, MD, AD, and RD values (p < 0.05) between groups. The DTI metrics of all fiber bundles significantly correlated with the Montreal Cognitive Assessment (p < 0.05), with the exception of the AD values of the FMA and ILF. Patients with WMLs showed changes in diffusion parameters in the main WM fiber bundles. Quantifiable changes in WM microstructure are the main pathological basis of cognitive impairment, and may serve as a biomarker of WMLs.

16.
Sci Total Environ ; 833: 155184, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35417731

ABSTRACT

A simple and efficient method was developed to rectify the surface properties of commercial melamine foam. The process was based on the siloxane coating originated from the silanization of methyltrimethoxysilane and tetraethoxysilane. The foam can be easily scaled up by employing low-cost chemicals and devices. The studies on the properties of the material showed that the wettability of melamine foam was changed to superhydrophobic with a water contact angle of 156° due to the presence of alkylsilane. The modified foam exhibited excellent oil/water selectivity and high oil absorption capacities of 77-163 times its own weight. The retention of absorption capacity was greater than 97% after 5000 cycles compression. These fascinating characteristics made the modified foam exceptional recyclability for commonly organic solvents and oils without obvious dissolution/swelling. Based on these inspiring results, the material can be employed for the continuous separation of various oil compounds floating on water surface with the assistance of a vacuum pump. Moreover, the prepared material was integrated with an apparatus to develop a prototype oil collector for the remediation of oil spills in a larger open-air environment. The devices could be readily used in a range of real-world applications, including industrial oil spill clean-up.


Subject(s)
Petroleum Pollution , Hydrophobic and Hydrophilic Interactions , Oils/chemistry , Petroleum Pollution/analysis , Triazines
17.
J Integr Plant Biol ; 64(5): 965-978, 2022 May.
Article in English | MEDLINE | ID: mdl-35249253

ABSTRACT

Auxin and auxin-mediated signaling pathways are known to regulate lateral root development. Although exocytic vesicle trafficking plays an important role in recycling the PIN-FORMED (PIN) auxin efflux carriers and in polar auxin transport during lateral root formation, the mechanistic details of these processes are not well understood. Here, we demonstrate that BYPASS1-LIKE (B1L) regulates lateral root initiation via exocytic vesicular trafficking-mediated PIN recycling in Arabidopsis thaliana. b1l mutants contained significantly more lateral roots than the wild type, primarily due to increased lateral root primordium initiation. Furthermore, the auxin signal was stronger in stage I lateral root primordia of b1l than in those of the wild type. Treatment with exogenous auxin and an auxin transport inhibitor indicated that the lateral root phenotype of b1l could be attributed to higher auxin levels and that B1L regulates auxin efflux. Indeed, compared to the wild type, C-terminally green fluorescent protein-tagged PIN1 and PIN3 accumulated at higher levels in b1l lateral root primordia. B1L interacted with the exocyst, and b1l showed defective PIN exocytosis. These observations indicate that B1L interacts with the exocyst to regulate PIN-mediated polar auxin transport and lateral root initiation in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biological Transport , Indoleacetic Acids/metabolism , Plant Roots/metabolism
18.
J Biomol Struct Dyn ; 40(18): 8206-8215, 2022 11.
Article in English | MEDLINE | ID: mdl-33847251

ABSTRACT

Arginine kinase is a crucial phosphagen kinase in invertebrates, which is associated to the environmental stress response, plays a key role in cellular energy metabolism. In this study, we investigated the Pb2+-induced inhibition and aggregation of Euphausia superba arginine kinase (ESAK) and found that significantly inactivated ESAK in a dose-dependent manner (IC50 = 0.058 ± 0.002 mM). Spectrofluorimetry results showed that Pb2+ induced tertiary structural changes via the internal polarity increased and the non-polarity decreased in ESAK and directly induced ESAK aggregation. The ESAK aggregation process induced by Pb2+ occurred with multi-phase kinetics. The addition of osmolytes did not show protective effect on Pb2+-induced inactivation of ESAK. The computational molecular dynamics (MD) simulation showed that three Pb2+ interrupt the entrance of the active site of ESAK and it could be the reason on the loss of activity of ESAK. Several important residues of ESAK were detected that were importantly contributed the conformation and catalytic function of ESAK. Our study showed that Pb2+-induced misfolding of ESAK and the complete loss of activity irreversibly, which cannot be recovered by osmolytes.Communicated by Ramaswamy H. Sarma.


Subject(s)
Arginine Kinase , Euphausiacea , Animals , Catalytic Domain , Euphausiacea/metabolism , Kinetics , Lead/toxicity
19.
Angew Chem Int Ed Engl ; 61(6): e202115265, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34874598

ABSTRACT

A series of solid supramolecules based on acrylamide-phenylpyridium copolymers with various substituent groups (P-R: R=-CN, -CO2 Et, -Me, -CF3 ) and cucurbit[7]uril (CB[7]) are constructed to exhibit tunable second-level (from 0.9 s to 2.2 s) room-temperature phosphorescence (RTP) in the amorphous state. Compared with other solid supramolecules P-R/CB[7] (R=-CN, -CO2 Et, -Me), P-CF3 /CB[7] displays the longest lifetime (2.2 s), which is probably attributed to the fluorophilic interaction of cucurbiturils leading to a uncommon host-guest interaction between 4-phenylpyridium with -CF3 and CB[7]. Furthermore, the RTP solid supramolecular assembly (donors) can further react with organic dyes Eosin Y or SR101 (acceptors) to form ternary supramolecular systems featuring ultralong phosphorescence energy transfer (PpET) and visible delayed fluorescence (yellow for EY at 568 nm and red for SR101 at 620 nm). Significantly, the ultralong multicolor PpET supramolecular assembly can be further applied in fields of anti-counterfeiting and information encryption and painting.

20.
Article in English | WPRIM (Western Pacific) | ID: wpr-928563

ABSTRACT

OBJECTIVES@#To investigate the clinical treatment outcomes and the changes of the outcomes over time in extremely preterm twins in Guangdong Province, China.@*METHODS@#A retrospective analysis was performed for 269 pairs of extremely preterm twins with a gestational age of <28 weeks who were admitted to the department of neonatology in 26 grade A tertiary hospitals in Guangdong Province from January 2008 to December 2017. According to the admission time, they were divided into two groups: 2008-2012 and 2013-2017. Besides, each pair of twins was divided into the heavier infant and the lighter infant subgroups according to birth weight. The perinatal data of mothers and hospitalization data of neonates were collected. The survival rate of twins and the incidence rate of complications were compared between the 2008-2012 and 2013-2017 groups.@*RESULTS@#Compared with the 2008-2012 group, the 2013-2017 group (both the heavier infant and lighter infant subgroups) had lower incidence rates of severe asphyxia and smaller head circumference at birth (P<0.05). The mortality rates of both of the twins, the heavier infant of the twins, and the lighter infant of the twins were lower in the 2013-2017 group compared with the 2008-2012 group (P<0.05). Compared with the 2008-2012 group, the 2013-2017 group (both the heavier infant and lighter infant subgroups) had lower incidence rates of pulmonary hemorrhage, patent ductus arteriosus (PDA), periventricular-intraventricular hemorrhage (P-IVH), and neonatal respiratory distress syndrome (NRDS) and a higher incidence rate of bronchopulmonary dysplasia (P<0.05).@*CONCLUSIONS@#There is a significant increase in the survival rate over time in extremely preterm twins with a gestational age of <28 weeks in the 26 grade A tertiary hospitals in Guangdong Province. The incidences of severe asphyxia, pulmonary hemorrhage, PDA, P-IVH, and NRDS decrease in both the heavier and lighter infants of the twins, but the incidence of bronchopulmonary dysplasia increases. With the improvement of diagnosis and treatment, the multidisciplinary collaboration between different fields of fetal medicine including prenatal diagnosis, obstetrics, and neonatology is needed in the future to jointly develop management strategies for twin pregnancy.


Subject(s)
Female , Humans , Infant , Infant, Newborn , Pregnancy , Bronchopulmonary Dysplasia/epidemiology , Gestational Age , Infant, Extremely Premature , Respiratory Distress Syndrome, Newborn/epidemiology , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL