Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(15): 10582-10595, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38564712

ABSTRACT

CO2 conversion with pure H2O into CH3OH and O2 driven by solar energy can supply fuels and life-essential substances for extraterrestrial exploration. However, the effective production of CH3OH is significantly challenging. Here we report an organozinc complex/MoS2 heterostructure linked by well-defined zinc-sulfur covalent bonds derived by the structural deformation and intensive coupling of dx2 - y2(Zn)-p(S) orbitals at the interface, resulting in distinctive charge transfer behaviors and excellent redox capabilities as revealed by experimental characterizations and first-principle calculations. The synthesis strategy is further generalized to more organometallic compounds, achieving various heterostructures for CO2 photoreduction. The optimal catalyst delivers a promising CH3OH yield of 2.57 mmol gcat-1 h-1 and selectivity of more than 99.5%. The reverse water gas shift mechanism is identified for methanol formation. Meanwhile, energy-unfavorable adsorption of methanol on MoS2, where the photogenerated holes accumulate, ensures the selective oxidation of water over methanol.

2.
Mol Plant Pathol ; 24(12): 1535-1551, 2023 12.
Article in English | MEDLINE | ID: mdl-37776021

ABSTRACT

Rice sheath blight (ShB) is a devastating disease that severely threatens rice production worldwide. Induction of cell death represents a key step during infection by the ShB pathogen Rhizoctonia solani. Nonetheless, the underlying mechanisms remain largely unclear. In the present study, we identified a rice transcription factor, OsERF65, that negatively regulates resistance to ShB by suppressing cell death. OsERF65 was significantly upregulated by R. solani infection in susceptible cultivar Lemont and was highly expressed in the leaf sheath. Overexpression of OsERF65 (OsERF65OE) decreased rice resistance, while the knockout mutant (oserf65) exhibited significantly increased resistance against ShB. The transcriptome assay revealed that OsERF65 repressed the expression of peroxidase genes after R. solani infection. The antioxidative enzyme activity was significantly increased in oserf65 plants but reduced in OsERF65OE plants. Consistently, hydrogen peroxide content was apparently reduced in oserf65 plants but accumulated in OsERF65OE plants. OsERF65 directly bound to the GCC box in the promoter regions of four peroxidase genes and suppressed their transcription, reducing the ability to scavenge reactive oxygen species (ROS). The oserf65 mutant exhibited a slight decrease in plant height but increased grain yield. Overall, our results revealed an undocumented role of OsERF65 that acts as a crucial regulator of rice resistance to R. solani and a potential target for improving both ShB resistance and rice yield.


Subject(s)
Oryza , Transcription Factors , Transcription Factors/genetics , Oryza/genetics , Reactive Oxygen Species , Disease Resistance/genetics , Peroxidases , Plant Diseases/genetics , Rhizoctonia/physiology
3.
Small ; 19(14): e2207581, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36651007

ABSTRACT

Overall photocatalytic conversion of CO2 and pure H2 O driven by solar irradiation into methanol provides a sustainable approach for extraterrestrial synthesis. However, few photocatalysts exhibit efficient production of CH3 OH. Here, BiOBr nanosheets supporting atomic Cu catalysts for CO2 reduction are reported. The investigation of charge dynamics demonstrates a strong built-in electric field established by isolated Cu sites as electron traps to facilitate charge transfer and stabilize charge carriers. As result, the catalysts exhibit a substantially high catalytic performance with methanol productivity of 627.66 µmol gcatal -1 h-1 and selectivity of ≈90% with an apparent quantum efficiency of 12.23%. Mechanism studies reveal that the high selectivity of methanol can be ascribed to energy-favorable hydrogenation of *CO intermediate giving rise to *CHO. The unfavorable adsorption on Cu1 @BiOBr prevents methanol from being oxidized by photogenerated holes. This work highlights the great potential of single-atom photocatalysts in chemical transformation and energy storage reactions.

4.
Am J Potato Res ; 100(1): 39-51, 2023.
Article in English | MEDLINE | ID: mdl-36573140

ABSTRACT

In Ecuador, farmers poorly adopt practices to manage potato seed degeneration. This could be related to the deficient understanding of the farmers' capacity to experience seed degeneration and respond to it. We contribute to this understanding by answering: How do farmers experience seed degeneration?; What practices do farmers implement when their seed is degenerated?; and Is experiencing degeneration the pivotal factor determining how farmers replace their seed regardless their income? We analysed data collected in Ecuador through farmers' focus group discussions, farmers' surveys and interviews, and the Ecuadorian employment status survey. We found that approximately half of the farmers experienced degeneration. Farmers experienced it through low yields, change in seed appearance, crop weakening, and seed physiological problems. When farmers experienced degeneration, they replaced their seed, sought for technical advice, applied more agricultural inputs, or grew other crops. Income was an important trigger for farmers to change their seed replacement practices.

5.
J Mater Chem B ; 10(26): 5035-5044, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35726686

ABSTRACT

Photothermal therapy combined with chemotherapy based on nanomedicine has been considered a promising strategy for improving therapeutic efficacy in a tumor. However, nanomedicine can be easily cleared by the immune system without specific surface engineering modifications, thus affecting the ultimate efficacy. Herein, multifunctional biomimetic nanoparticles (Bio-RBCm@PDA@MSN-DOX) with enhanced long circulation and targeting ability are constructed by coating large pore-sized mesoporous silica (MSN) with polydopamine (PDA) layers in a biotin modified red blood cell membrane (Bio-RBCm) for efficient chemo/photothermal synergistic therapy. It is demonstrated that Bio-RBCm@PDA@MSN-DOX presents high photothermal conversion efficiency (40.17%) and enhanced capability to accelerate the release of the anticancer drug (doxorubicin, DOX), thus showing a good synergistic therapeutic effect in cell experiments. More importantly, with the assistance of the biotin and RBC membrane, Bio-RBCm@PDA@MSN-DOX can successfully evade immune clearance and effectively target transport to HeLa tumor sites, finally accomplishing up to 98.95% tumor inhibition with negligible side effects to normal tissues. This multilayer structure presents a valuable model for future therapeutic applications with safe and effective tumor chemotherapy and photothermal therapy.


Subject(s)
Nanoparticles , Neoplasms , Biomimetics , Biotin , Doxorubicin/chemistry , Humans , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Phototherapy , Photothermal Therapy
6.
J Colloid Interface Sci ; 615: 831-839, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35180631

ABSTRACT

Nitrogen-doped Ti3C2Ty MXene with multivalent cobalt and oxygen vacancy (Vo) modification was obtained by using molten salt method and greatly improved electrocatalytic performance. The structural properties of MXene and the valence state of cobalt were adjusted by controlling the molten salt temperature. When the molten salt treatment temperature was 377 °C, the obtained 377-CoOxN1-x-Ti3C2Ty maintained the chemical structure of MXene well, and also has high Co2+ content and Vo content. Electrochemical test results showed that 377-CoOxN1-x-Ti3C2Ty had the lowest Hydrogen Evolution Reaction (HER) overpotential of 87.73 mV and good electrocatalytic stability. X-ray Photoelectron Spectroscopy (XPS) results and Density Functional Theory (DFT) calculations showed that the introduction of polyvalent cobalt and Vo in the nitrogen-doped Ti3C2Ty structure effectively reduced the energy barrier of the electrocatalytic reaction of MXene.

7.
Dalton Trans ; 49(22): 7467-7473, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32432591

ABSTRACT

Plasmon-mediated photocatalytic systems often suffer from weak absorption spectra overlap which limits energy transfer between plasmon metals and semiconductors. Herein, Au-Agx@CdS90 nanoparticles (NPs) with adjustable spectral overlap were prepared. Au-Ag hollow nanoparticles (HNPs) with tunable plasmon absorption peaks were used as the template and were coated with CdS to achieve stepwise spectral overlap for enhanced energy transfer. As the spectral overlap increased between Au-Ag HNPs and CdS, the H2 evolution rate increased and then decreased. Under visible-light irradiation, Au-Ag487@CdS90 nanoparticles (NPs) delivered an H2 evolution rate of 18.73 mmol h-1 g-1, which was 2.2 times higher than pure CdS. The plasmon resonance energy transfer from Au-Ag HNPs to the CdS semiconductor increased the generation of charge carriers in the semiconductor and enhanced the photocatalytic performance. By regulating the position of the plasmon absorption peaks of the noble metal nanoparticles, changing the spectral overlap between metal and semiconductor to enhance the PRET effect is beneficial to the design of new plasmon photocatalysts.

8.
Dalton Trans ; 47(7): 2214-2221, 2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29362750

ABSTRACT

ZnS as an inorganic passivation agent has been proven to be effective in suppressing charge recombination and enhancing power conversion efficiency (PCE) in quantum dot-sensitized solar cells (QDSCs). In the present study, we constructed a novel TiO2/ZnS/CdS/ZnCdS/CdSe/ZnS photoelectrode via successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD). The complementary effects of multi-ZnS layers on the optical and electrochemical performance of the QDSCs were systematically investigated. The multi-ZnS can not only facilitate the growth and distribution of QDs, but also suppress the different interface charge recombination effectively. We suggest that the formation of the ZnCdS intermediate layers via ion-exchange route during CBD process contributes to the higher photoelectrochemical cell performance of the QDSCs with the middle ZnS layer. When the three-layer ZnS was employed in CdS/CdSe co-sensitized system, the PCE reached 6.05%, which is much higher than that observed for solar cells with the conventional single ZnS treatments and the two layers inserted at the interface between CdS QDs and CdSe QDs and electrolyte (4.80% and 5.42%, respectively).

SELECTION OF CITATIONS
SEARCH DETAIL