Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 341: 139916, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37633607

ABSTRACT

Halogenated aromatic disinfection by-products (DBPs) are a new type of DBPs that have been detected in various water bodies. Previous studies have shown that most of them can induce in vivo toxicity in aquatic organisms. In this study, in order to further investigate the toxic effects and mechanisms of aromatic DBPs, the toxicity and ecological risks of 10 halogenated aromatic DBPs were assessed using the model organism zebrafish. It was found that the toxicity of DBPs was related to the number, type, and position of halogen and the type of substituent, and the 24 h-toxicity value of DBPs in this experiment could replace their 96 h-toxicity value to reduce the test time and save the test cost. Halogenated phenol and halogenated nitrophenol were more toxic, but the current ecological risks of DBPs were relatively low. In addition, the toxicity mechanism of DBPs was analyzed based on molecular docking and quantitative structure-activity relationship (QSAR) models. The molecular docking results showed that all 10 DBPs could bind to zebrafish's catalase (CAT), cytochrome P450 (CYP450), p53, and acetylcholinesterase (AChE), thereby affecting their normal life activities. QSAR models indicated that the toxicity of halogenated aromatic DBPs to zebrafish mainly depended on their hydrophobicity (log D), the interaction with CAT (ECAT), and hydrogen bonding acidity (A).


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Animals , Disinfection/methods , Zebrafish , Quantitative Structure-Activity Relationship , Molecular Docking Simulation , Acetylcholinesterase , Halogenation , Water Purification/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Disinfectants/toxicity
2.
Int J Mol Sci ; 20(23)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779219

ABSTRACT

The fatty acid-binding protein (FABP) gene family, which encodes a group of fatty acid-trafficking molecules that affect cellular functions, has been studied extensively in mammals. However, little is known about the gene structure, expression profile, and regulatory mechanism of the gene family in chickens. In the present study, bioinformatics-based methods were used to identify the family members and investigate their evolutionary history and features of gene structure. Real-time PCR combined with in vivo and in vitro experiments were used to examine the spatiotemporal expression pattern, and explore the regulatory mechanism of FABP genes. The results show that nine members of the FABP gene family, which branched into two clusters and shared a conserved FATTYACIDBP domain, exist in the genome of chickens. Of these, seven FABP genes, including FABP1, FABP3-7, and FABP10 were abundantly expressed in the liver of hens. The expression levels of FABP1, FABP3, and FABP10 were significantly increased, FABP5 and FABP7 were significantly decreased, and FABP4 and FABP6 remained unchanged in hens at the peak laying stage in comparison to those at the pre-laying stage. Transcription of FABP1 and FABP3 were activated by estrogen via estrogen receptor (ER) α, whilst FABP10 was activated by estrogen via ERß. Meanwhile, the expression of FABP1 was regulated by peroxisome proliferator activated receptor (PPAR) isoforms, of which tested PPARα and PPARß agonists significantly inhibited the expression of FABP1, while tested PPARγ agonists significantly increased the expression of FABP1, but downregulated it when the concentration of the PPARγ agonist reached 100 nM. The expression of FABP3 was upregulated via tested PPARß and PPARγ agonists, and the expression of FABP7 was selectively promoted via PPARγ. The expression of FABP10 was activated by all of the three tested PPAR agonists, but the expression of FABP4-6 was not affected by any of the PPAR agonists. In conclusion, members of the FABP gene family in chickens shared similar functional domains, gene structures, and evolutionary histories with mammalian species, but exhibited varying expression profiles and regulatory mechanisms. The results provide a valuable resource for better understanding the biological functions of individual FABP genes in chickens.


Subject(s)
Computational Biology/methods , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Animals , Cell Line , Chickens , Evolution, Molecular , Fatty Acid-Binding Proteins/chemistry , Female , Gene Expression Regulation , Liver/metabolism , Multigene Family , Promoter Regions, Genetic , Protein Domains , Receptors, Estrogen/chemistry , Receptors, Estrogen/metabolism , Tissue Distribution , Transcriptional Activation
3.
Int J Mol Sci ; 20(18)2019 Sep 08.
Article in English | MEDLINE | ID: mdl-31500376

ABSTRACT

Accumulating evidence has shown that miR-34a serves as a posttranscriptional regulatory molecule of lipid metabolism in mammals. However, little studies about miR-34a on lipid metabolism in poultry have been reported until now. To gain insight into the biological functions and action mechanisms of miR-34a on hepatic lipid metabolism in poultry, we firstly investigated the expression pattern of miR-34a-5p, a member of miR-34a family, in liver of chicken, and determined its function in hepatocyte lipid metabolism by miR-34a-5p overexpression and inhibition, respectively. We then validated the interaction between miR-34a-5p and its target using dual-luciferase reporter assay, and explored the action mechanism of miR-34a-5p on its target by qPCR and Western blotting. Additionally, we looked into the function of the target gene on hepatocyte lipid metabolism by gain- and loss-of-function experiments. Our results indicated that miR-34a-5p showed a significantly higher expression level in livers in peak-laying hens than that in pre-laying hens. miR-34a-5p could increase the intracellular levels of triglycerides and total cholesterol in hepatocyte. Furthermore, miR-34a-5p functioned by inhibiting the translation of its target gene, long-chain acyl-CoA synthetase 1 (ACSL1), which negatively regulates hepatocyte lipid content. In conclusion, miR-34a-5p could increase intracellular lipid content by reducing the protein level, without influencing mRNA stability of the ACSL1 gene in chickens.


Subject(s)
Chickens/genetics , Chickens/metabolism , Cholesterol/metabolism , Coenzyme A Ligases/genetics , Liver/metabolism , MicroRNAs/genetics , Triglycerides/metabolism , Animals , Base Sequence , Cell Line , Coenzyme A Ligases/metabolism , Gene Expression , Lipid Metabolism , MicroRNAs/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...