Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 776, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278801

ABSTRACT

Critical phenomena are one of the most captivating areas of modern physics, whereas the relevant experimental and theoretical studies are still very challenging. Particularly, the underlying mechanism behind the anomalous thermoelectric properties during critical phase transitions remains elusive, i.e., the current theoretical models for critical electrical transports are either qualitative or solely focused on a specific transport parameter. Herein, we develop a quantitative theory to model the electrical transports during critical phase transitions by incorporating both the band broadening effect and carrier-soft TO phonon interactions. It is found that the band-broadening effect contributes an additional term to Seebeck coefficient, while the carrier-soft TO phonon interactions greatly affects both electrical resistivity and Seebeck coefficient. The universality and validity of our model are well confirmed by experimental data. Furthermore, the features of critical phase transitions are effectively tuned. For example, alloying S in Cu2Se can reduce the phase transition temperature but increase the phase transition parameter b. The maximum thermoelectric figure of merit zT is pushed to a high value of 1.3 at the critical point (377 K), which is at least twice as large as those of normal static phases. This work not only provides a clear picture of the critical electrical transports but also presents new guidelines for future studies in this exciting area.

2.
ACS Appl Mater Interfaces ; 14(1): 1015-1023, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34951308

ABSTRACT

Phase transition is an effective strategy to engineer thermal conductivity and electrical transports. Recently, p-type CuAgTe1-xSex materials were reported to show excellent thermoelectric performance at 300-450 K, but the data are controversial due to the cooccurrence of phase transition in this temperature range. Accurately measuring and analyzing the electrical and thermal transport properties in the narrow phase transition temperature range is a quite challenging task. In this work, we systemically investigate the phase transition behavior, and electrical and thermal transport properties of p-type CuAgTe1-xSex (x = 0.3, 0.4, and 0.5) near 400 K. CuAgTe1-xSex (x = 0.3, 0.4, and 0.5) materials show similar phase transition temperatures but quite different phase transition speeds. The phase transition has a weak influence on the electrical transport properties of CuAgTe0.7Se0.3 and CuAgTe0.6Se0.4, but a strong influence on those of CuAgTe0.5Se0.5. Likewise, an obvious underestimation of thermal diffusivity, with a maximum deviation about 20% off the real value, is observed during the phase transition temperature range for CuAgTe1-xSex. Finally, CuAgTe0.7Se0.3 shows a peak zT around 0.9 at 390 K. The present study proves that CuAgTe1-xSex solid solutions are one kind of promising near-room-temperature thermoelectric material.

3.
J Phys Chem Lett ; 12(34): 8246-8255, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34423992

ABSTRACT

Silver selenide, Ag2Se, is a promising low-temperature thermoelectric material which can be used to harvest the low-quality waste heat for electrical power generation or cool the microelectronics. Currently, the investigation on Ag2Se and its derivatives has become a hot topic in the thermoelectric community, but the thermoelectric properties of Ag2Se below 300 K have been rarely investigated. In this study, we prepared Ag2Se by using the zone-melting method. The electrical and thermal transport properties of zone-melted Ag2Se from 5 to 380 K were systematically investigated and compared with the previously reported data of Ag2Se and other typical low-temperature thermoelectric materials, such as Mg3Bi2, Bi2Te3, and BiSb. Ag2Se shows intrinsic semiconductor features, ultrahigh carrier mobility, small density-of-state effective mass, and ultralow lattice thermal conductivity. At 300 K, the zT of zone-melted Ag2Se is 0.75. This study will shed light on the further investigation of Ag2Se.

4.
Adv Mater ; 31(49): e1903480, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31617626

ABSTRACT

Most of the state-of-the-art thermoelectric (TE) materials exhibit high crystal symmetry, multiple valleys near the Fermi level, heavy constituent elements with small electronegativity differences, or complex crystal structure. Typically, such general features have been well observed in those well-known TE materials such as Bi2 X3 -, SnX-, and PbX-based compounds (X = S, Se, and Te). The performance is usually high in the materials with heavy constituent elements such as Te and Se, but it is low for light constituent elements such as S. However, there is a great abnormality in Cu2 X-based compounds in which Cu2 Te has much lower TE figure of merit (zT) than Cu2 S and Cu2 Se. It is demonstrated that the Cu2 Te-based compounds are also excellent TE materials if Cu deficiency is sufficiently suppressed. By introducing Ag2 Te into Cu2 Te, the carrier concentration is substantially reduced to significantly improve the zT with a record-high value of 1.8, 323% improvement over Cu2 Te and outperforms any other Cu2 Te-based materials. The single parabolic band model is used to further prove that all Cu2 X-based compounds are excellent TE materials. Such finding makes Cu2 X-based compounds the only type of material composed of three sequent main group elements that all possess very high zT  s above 1.5.

5.
Adv Mater ; 31(6): e1806518, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30549105

ABSTRACT

Thermal conductivity is a very basic property that determines how fast a material conducts heat, which plays an important and sometimes a dominant role in many fields. However, because materials with phase transitions have been widely used recently, understanding and measuring temperature-dependent thermal conductivity during phase transitions are important and sometimes even questionable. Here, the thermal transport equation is corrected by including heat absorption due to phase transitions to reveal how a phase transition affects the measured thermal conductivity. In addition to the enhanced heat capacity that is well known, it is found that thermal diffusivity can be abnormally lowered from the true value, which is also dependent on the speed of phase transitions. The extraction of the true thermal conductivity requires removing the contributions from both altered heat capacity and thermal diffusivity during phase transitions, which is well demonstrated in four selected kinds of phase transition materials (Cu2 Se, Cu2 S, Ag2 S, and Ag2 Se) in experiment. This study also explains the lowered abnormal thermal diffusivity during phase transitions in other materials and thus provides a novel strategy to engineer thermal conductivity for various applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...