Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29977227

ABSTRACT

In mammals, insulin is known to modify growth hormone (GH)-induced IGF-I expression at the hepatic level, which also contributes to the functional crosstalk between energy homeostasis and somatotropic axis. However, the studies on the comparative aspects of this phenomenon are limited and the mechanisms involved have not been fully characterized. Using a serum-free culture of grass carp hepatoctyes, the functional interaction between GH and insulin on hepatic expression of IGF-I and -II was examined in a fish model. In carp hepatocytes, GH could up-regulate IGF-I and -II mRNA expression via the JAK2/STAT5, MEK/ERK and PI3K/Akt pathways. These stimulatory effects were mimicked by insulin via activation of the PI3K/Akt but not MEK/ERK and P38 MAPK cascades. Although insulin did not activate JAK2 and STAT5 at hepatocyte level, insulin-induced IGF-I and -II mRNA expression were highly dependent on the normal functioning of JAK2/STAT5 pathway. In parallel experiments, insulin co-treatment was found to markedly enhance IGF-I and -II responses induced by GH and these potentiating effects were mediated by insulin receptor (InsR) but not IGF-I receptor. Interestingly, co-treatment with GH also enhanced insulin-induced InsR phosphorylation with a current elevation in protein:protein interaction between GH receptor and phosphorylated InsR and these stimulatory effects were noted with further enhancement in STAT5, ERK1/2 and Akt phosphorylation at hepatocyte level. Consistent with these findings, the potentiating effects of GH and insulin co-treatment on IGF-I and -II mRNA expression were found to be suppressed/abolished by inhibiting JAK2/STAT5, MEK/ERK and PI3K/Akt but not P38 MAPK pathways. These results, as a whole, suggest that insulin and GH can act in a synergistic manner in the carp liver to up-regulate IGF-I and -II expression through protein:protein interaction at the receptor level followed by potentiation in post-receptor signaling.

2.
Article in English | MEDLINE | ID: mdl-28883808

ABSTRACT

Activin is involved in pituitary hormone regulation and its pituitary actions can be nullified by local production of its binding protein follistatin. In our recent study with grass carp, local release of growth hormone (GH) was shown to induce activin expression at pituitary level, which in turn could exert an intrapituitary feedback to inhibit GH synthesis and secretion. To further examine the activin/follistatin system in the carp pituitary, grass carp follistatin was cloned and confirmed to be single-copy gene widely expressed at tissue level. At the pituitary level, follistatin signals could be located in carp somatotrophs, gonadotrophs, and lactotrophs. Functional expression also revealed that carp follistatin was effective in neutralizing activin's action in stimulating target promoter with activin-responsive elements. In grass carp pituitary cells, follistatin co-treatment was found to revert activin inhibition on GH mRNA expression. Meanwhile, follistatin mRNA levels could be up-regulated by local production of activin but the opposite was true for dopaminergic activation with dopamine (DA) or its agonist apomorphine. Since GH stimulation by DA via pituitary D1 receptor is well-documented in fish models, the receptor specificity for follistatin regulation by DA was also investigated. Using a pharmacological approach, the inhibitory effect of DA on follistatin gene expression was confirmed to be mediated by pituitary D1 but not D2 receptor. Furthermore, activation of D1 receptor by the D1-specific agonist SKF77434 was also effective in blocking follistatin mRNA expression induced by activin and GH treatment both in carp pituitary cells as well as in carp somatotrophs enriched by density gradient centrifugation. These results, as a whole, suggest that activin can interact with dopaminergic input from the hypothalamus to regulate follistatin expression in carp pituitary, which may contribute to GH regulation by activin/follistatin system via autocrine/paracrine mechanisms.

3.
PLoS One ; 12(6): e0179789, 2017.
Article in English | MEDLINE | ID: mdl-28662143

ABSTRACT

Gonadotrophin regulation by activin/follistatin system is well-documented, but the corresponding effect on growth hormone (GH) has not been fully characterized and with little information available in lower vertebrates, especially in fish models. In grass carp, local interactions of GH and luteinizing hormone (LH) can induce GH release and gene expression at pituitary level via autocrine/paracrine mechanisms. To shed light on the role of activin/follistatin system in GH regulation by local actions of GH and LH, grass carp activin ßA and ßB were cloned, shown to be single-copy genes expressed in the pituitary, and confirmed to encode activin proteins capable of transactivating promoter with activin-responsive elements. In grass carp pituitary cells, activin A and B were effective in reducing GH secretion and GH cell content with concurrent drop in GH mRNA level whereas the opposite was true for follistatin, the activin-binding protein known to neutralize the effects of endogenous activin. Treatment with activin A and B not only could suppress basal but also inhibit GH mRNA expression induced by GH and human chorionic gonadotropin (hCG), a functional analogue of LH in fish model. Apparently, down-regulation of GH mRNA by activin was mediated by reducing GH transcript stability with concurrent inhibition on GH promoter activity via the SMAD pathway. In reciprocal experiments, GH treatment was found to up-regulate activin ßA, activin ßB and follistatin mRNA levels in carp pituitary cells but the opposite was noted by removing endogenous GH with GH antiserum. Interestingly, parallel treatment with hCG could also inhibit basal as well as GH-induced activin ßA, activin ßB and follistatin gene expression. These results, as a whole, indicate that the pituitary activin/follistatin system can serve as a regulatory target for local interactions of GH and LH and contribute to GH regulation by autocrine/paracrine mechanisms in the carp pituitary.


Subject(s)
Activins/physiology , Follistatin/physiology , Growth Hormone/metabolism , Luteinizing Hormone/metabolism , Pituitary Gland/physiology , Activins/genetics , Animals , Carps , Cloning, Molecular , Female , Follistatin/genetics , Male , Pituitary Gland/cytology
4.
Environ Pollut ; 182: 120-6, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23906559

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) have been commonly used as flame retardants and now become ubiquitous in the global environment. Using zebrafish as a model, we tested the hypothesis that PBDEs may affect the reproduction and development of fish. Zebrafish were exposed to environmentally relevant concentrations of DE-71 (a congener of PBDE commonly found in the environment) throughout their whole life cycle, and the effects of DE-71 on gonadal development, gamete quality, fertilization success, hatching success, embryonic development and sex ratio were investigated. Despite gonadal development was enhanced, reductions in spawning, fertilization success, hatching success and larval survival rate were evident, while significant increases in malformation and percentage of male were also observed in the F1 generation. Our laboratory results suggest that PBDEs may pose a risk to reproductive success and alter the sex ratio of fish in environments highly contaminated with PBDEs.


Subject(s)
Embryo, Nonmammalian/drug effects , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/toxicity , Abnormalities, Drug-Induced , Animals , Flame Retardants/metabolism , Growth and Development/drug effects , Halogenated Diphenyl Ethers/metabolism , Reproduction/drug effects , Sex Ratio , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/embryology , Zebrafish/growth & development
5.
Curr Biol ; 21(21): 1800-7, 2011 Nov 08.
Article in English | MEDLINE | ID: mdl-22018540

ABSTRACT

DNA injected into the Caenorhabditis elegans germline forms extrachromosomal arrays that segregate during cell division [1, 2]. The mechanisms underlying array formation and segregation are not known. Here, we show that extrachromosomal arrays form de novo centromeres at high frequency, providing unique access to a process that occurs with extremely low frequency in other systems [3-8]. De novo centromerized arrays recruit centromeric chromatin and kinetochore proteins and autonomously segregate on the spindle. Live imaging following DNA injection revealed that arrays form after oocyte fertilization via homologous recombination and nonhomologous end-joining. Individual arrays gradually transition from passive inheritance to active segregation during the early embryonic divisions. The heterochromatin protein 1 (HP1) family proteins HPL-1 and HPL-2 are dispensable for de novo centromerization even though arrays become strongly enriched for the heterochromatin-associated H3K9me3 modification over time. Partial inhibition of HP1 family proteins accelerates the acquisition of segregation competence. In addition to reporting the first direct visualization of new centromere formation in living cells, these findings reveal that naked DNA rapidly builds de novo centromeres in C. elegans embryos in an HP1-independent manner and suggest that, rather than being a prerequisite, HP1-dependent heterochromatin antagonizes de novo centromerization.


Subject(s)
Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Centromere/metabolism , DNA, Helminth/metabolism , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Homologous Recombination , Kinetochores/metabolism
6.
Proc Natl Acad Sci U S A ; 105(9): 3443-8, 2008 Mar 04.
Article in English | MEDLINE | ID: mdl-18299561

ABSTRACT

Although the majority of colorectal cancers exhibit chromosome instability (CIN), only a few genes that might cause this phenotype have been identified and no general mechanism underlying their function has emerged. To systematically identify somatic mutations in potential CIN genes in colorectal cancers, we determined the sequence of 102 human homologues of 96 yeast CIN genes known to function in various aspects of chromosome transmission fidelity. We identified 11 somatic mutations distributed among five genes in a panel that included 132 colorectal cancers. Remarkably, all but one of these 11 mutations were in the homologs of yeast genes that regulate sister chromatid cohesion. We then demonstrated that down-regulation of such homologs resulted in chromosomal instability and chromatid cohesion defects in human cells. Finally, we showed that down-regulation or genetic disruption of the two major candidate CIN genes identified in previous studies (MRE11A and CDC4) also resulted in abnormal sister chromatid cohesion in human cells. These results suggest that defective sister chromatid cohesion as a result of somatic mutations may represent a major cause of chromosome instability in human cancers.


Subject(s)
Chromatids , Chromosomal Instability/genetics , Colorectal Neoplasms/genetics , Mutation , Neoplasm Proteins/genetics , Base Sequence , Cell Cycle Proteins/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA, Neoplasm , DNA-Binding Proteins/genetics , Down-Regulation/drug effects , Down-Regulation/physiology , F-Box Proteins/genetics , F-Box-WD Repeat-Containing Protein 7 , Genes, Fungal , Humans , MRE11 Homologue Protein , Neoplasm Proteins/physiology , Nuclear Proteins/genetics , Proteins/genetics , RNA, Small Interfering/pharmacology , Ubiquitin-Protein Ligases/genetics
7.
Proc Natl Acad Sci U S A ; 104(10): 3925-30, 2007 Mar 06.
Article in English | MEDLINE | ID: mdl-17360454

ABSTRACT

To systematically identify genes that maintain genome structure, yeast knockout mutants were examined by using three assays that followed marker inheritance in different chromosomal contexts. These screens identified 130 null mutant strains exhibiting chromosome instability (CIN) phenotypes. Differences in both phenotype severity and assay specificity were observed. The results demonstrate the advantages of using complementary assays to comprehensively identify genome maintenance determinants. Genome structure was important in determining the spectrum of gene and pathway mutations causing a chromosome instability phenotype. Protein similarity identified homologues in other species, including human genes with relevance to cancer. This extensive genome instability catalog can be combined with emerging genetic interaction data from yeast to support the identification of candidate targets for therapeutic elimination of chromosomally unstable cancer cells by selective cell killing.


Subject(s)
Genes, Fungal , Genome, Fungal , Neoplasms/genetics , Chromosome Mapping , Chromosomes , Genetic Complementation Test , Genetic Techniques , Haploidy , Humans , Karyotyping , Models, Biological , Models, Genetic , Mutation , Neoplasms/metabolism , Phenotype , Transgenes
8.
Curr Opin Cell Biol ; 17(6): 576-82, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16233975

ABSTRACT

The molecular mechanisms ensuring accurate chromosome segregation during meiosis and mitosis are critical to the conservation of euploidy (normal chromosome number) in eukaryotic cells. A dysfunctional kinetochore represents one possible source for chromosome instability (CIN) and the generation of aneuploidy. The kinetochore is a large complex of proteins and associated centromeric DNA that is responsible for mediating the segregation of sister chromatids to daughter cells via its interactions with the mitotic spindle. Continued identification of conserved kinetochore components in model systems such as yeast has provided a rich resource of candidate genes that may be mutated or misregulated in human cancers. Systematic mutational testing and transcriptional profiling of CIN candidate kinetochore genes should shed light on the kinetochore's role in tumorigenesis, and on the general role CIN plays in cancer development.


Subject(s)
Kinetochores , Neoplasms/etiology , Animals , Chromosomal Instability/genetics , Humans , Mutation , Neoplasms/genetics , Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL