Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Nat Genet ; 56(4): 585-594, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553553

ABSTRACT

We performed whole-genome sequencing (WGS) in 327 children with cerebral palsy (CP) and their biological parents. We classified 37 of 327 (11.3%) children as having pathogenic/likely pathogenic (P/LP) variants and 58 of 327 (17.7%) as having variants of uncertain significance. Multiple classes of P/LP variants included single-nucleotide variants (SNVs)/indels (6.7%), copy number variations (3.4%) and mitochondrial mutations (1.5%). The COL4A1 gene had the most P/LP SNVs. We also analyzed two pediatric control cohorts (n = 203 trios and n = 89 sib-pair families) to provide a baseline for de novo mutation rates and genetic burden analyses, the latter of which demonstrated associations between de novo deleterious variants and genes related to the nervous system. An enrichment analysis revealed previously undescribed plausible candidate CP genes (SMOC1, KDM5B, BCL11A and CYP51A1). A multifactorial CP risk profile and substantial presence of P/LP variants combine to support WGS in the diagnostic work-up across all CP and related phenotypes.


Subject(s)
Cerebral Palsy , DNA Copy Number Variations , Humans , Child , DNA Copy Number Variations/genetics , Cerebral Palsy/genetics , Mutation , Whole Genome Sequencing , Genomics
2.
EBioMedicine ; 101: 105027, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418263

ABSTRACT

BACKGROUND: Cardiomyopathy is a clinically and genetically heterogeneous heart condition that can lead to heart failure and sudden cardiac death in childhood. While it has a strong genetic basis, the genetic aetiology for over 50% of cardiomyopathy cases remains unknown. METHODS: In this study, we analyse the characteristics of tandem repeats from genome sequence data of unrelated individuals diagnosed with cardiomyopathy from Canada and the United Kingdom (n = 1216) and compare them to those found in the general population. We perform burden analysis to identify genomic and epigenomic features that are impacted by rare tandem repeat expansions (TREs), and enrichment analysis to identify functional pathways that are involved in the TRE-associated genes in cardiomyopathy. We use Oxford Nanopore targeted long-read sequencing to validate repeat size and methylation status of one of the most recurrent TREs. We also compare the TRE-associated genes to those that are dysregulated in the heart tissues of individuals with cardiomyopathy. FINDINGS: We demonstrate that tandem repeats that are rarely expanded in the general population are predominantly expanded in cardiomyopathy. We find that rare TREs are disproportionately present in constrained genes near transcriptional start sites, have high GC content, and frequently overlap active enhancer H3K27ac marks, where expansion-related DNA methylation may reduce gene expression. We demonstrate the gene silencing effect of expanded CGG tandem repeats in DIP2B through promoter hypermethylation. We show that the enhancer-associated loci are found in genes that are highly expressed in human cardiomyocytes and are differentially expressed in the left ventricle of the heart in individuals with cardiomyopathy. INTERPRETATION: Our findings highlight the underrecognized contribution of rare tandem repeat expansions to the risk of cardiomyopathy and suggest that rare TREs contribute to ∼4% of cardiomyopathy risk. FUNDING: Government of Ontario (RKCY), The Canadian Institutes of Health Research PJT 175329 (RKCY), The Azrieli Foundation (RKCY), SickKids Catalyst Scholar in Genetics (RKCY), The University of Toronto McLaughlin Centre (RKCY, SM), Ted Rogers Centre for Heart Research (SM), Data Sciences Institute at the University of Toronto (SM), The Canadian Institutes of Health Research PJT 175034 (SM), The Canadian Institutes of Health Research ENP 161429 under the frame of ERA PerMed (SM, RL), Heart and Stroke Foundation of Ontario & Robert M Freedom Chair in Cardiovascular Science (SM), Bitove Family Professorship of Adult Congenital Heart Disease (EO), Canada Foundation for Innovation (SWS, JR), Canada Research Chair (PS), Genome Canada (PS, JR), The Canadian Institutes of Health Research (PS).


Subject(s)
Cardiomyopathies , Heart Defects, Congenital , Humans , Adult , Heart Defects, Congenital/genetics , Tandem Repeat Sequences/genetics , DNA Methylation , Cardiomyopathies/genetics , Ontario , Nerve Tissue Proteins/genetics
4.
BMC Med Genomics ; 16(1): 281, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37940981

ABSTRACT

BACKGROUND: Elevated triglyceride (TG) levels are a heritable and modifiable risk factor for cardiovascular disease and have well-established associations with common genetic variation captured in a polygenic risk score (PRS). In young adulthood, the 22q11.2 microdeletion conveys a 2-fold increased risk for mild-moderate hypertriglyceridemia. This study aimed to assess the role of the TG-PRS in individuals with this elevated baseline risk for mild-moderate hypertriglyceridemia. METHODS: We studied a deeply phenotyped cohort of adults (n = 157, median age 34 years) with a 22q11.2 microdeletion and available genome sequencing, lipid level, and other clinical data. The association between a previously developed TG-PRS and TG levels was assessed using a multivariable regression model adjusting for effects of sex, BMI, and other covariates. We also constructed receiver operating characteristic (ROC) curves using logistic regression models to assess the ability of TG-PRS and significant clinical variables to predict mild-moderate hypertriglyceridemia status. RESULTS: The TG-PRS was a significant predictor of TG-levels (p = 1.52E-04), along with male sex and BMI, in a multivariable model (pmodel = 7.26E-05). The effect of TG-PRS appeared to be slightly stronger in individuals with obesity (BMI ≥ 30) (beta = 0.4617) than without (beta = 0.1778), in a model unadjusted for other covariates (p-interaction = 0.045). Among ROC curves constructed, the inclusion of TG-PRS, sex, and BMI as predictor variables produced the greatest area under the curve (0.749) for classifying those with mild-moderate hypertriglyceridemia, achieving an optimal sensitivity and specificity of 0.746 and 0.707, respectively. CONCLUSIONS: These results demonstrate that in addition to significant effects of sex and BMI, genome-wide common variation captured in a PRS also contributes to the variable expression of the 22q11.2 microdeletion with respect to elevated TG levels.


Subject(s)
Cardiovascular Diseases , Hypertriglyceridemia , Adult , Humans , Male , Young Adult , Risk Factors , Obesity , Hypertriglyceridemia/genetics , Triglycerides , Genome-Wide Association Study
5.
Res Sq ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37645891

ABSTRACT

Tandem repeat expansions are enriched in autism spectrum disorder, including CTG expansion in the DMPK gene that underlines myotonic muscular dystrophy type 1. Although the clinical connection of autism to myotonic dystrophy is corroborated, the molecular links remained unknown. Here, we show a mechanistic path of autism via repeat expansion in myotonic dystrophy. We found that inhibition of muscleblind-like (MBNL) splicing factors by expanded CUG RNAs alerts the splicing of autism-risk genes during brain development especially a class of autism-relevant microexons. To provide in vivo evidence that the CTG expansion and MBNL inhibition axis leads to the presentation of autistic traits, we demonstrate that CTG expansion and MBNL-null mouse models recapitulate autism-relevant mis-splicing profiles and demonstrate social deficits. Our findings indicate that DMPK CTG expansion-associated autism arises from developmental mis-splicing. Understanding this pathomechanistic connection provides an opportunity for greater in-depth investigations of mechanistic threads in autism.

7.
Hum Mol Genet ; 32(15): 2411-2421, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37154571

ABSTRACT

We assessed the relationship of gene copy number variation (CNV) in mental health/neurodevelopmental traits and diagnoses, physical health and cognition in a community sample of 7100 unrelated children and youth of European or East Asian ancestry (Spit for Science). Clinically significant or susceptibility CNVs were present in 3.9% of participants and were associated with elevated scores on a continuous measure of attention-deficit/hyperactivity disorder (ADHD) traits (P = 5.0 × 10-3), longer response inhibition (a cognitive deficit found in several mental health and neurodevelopmental disorders; P = 1.0 × 10-2) and increased prevalence of mental health diagnoses (P = 1.9 × 10-6, odds ratio: 3.09), specifically ADHD, autism spectrum disorder anxiety and learning problems/learning disorder (P's < 0.01). There was an increased burden of rare deletions in gene-sets related to brain function or expression in brain associated with more ADHD traits. With the current mental health crisis, our data established a baseline for delineating genetic contributors in pediatric-onset conditions.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Adolescent , Humans , Child , Mental Health , DNA Copy Number Variations/genetics , Autism Spectrum Disorder/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/genetics , Gene Dosage
8.
Mol Psychiatry ; 28(1): 475-482, 2023 01.
Article in English | MEDLINE | ID: mdl-36380236

ABSTRACT

Tandem repeat expansions (TREs) are associated with over 60 monogenic disorders and have recently been implicated in complex disorders such as cancer and autism spectrum disorder. The role of TREs in schizophrenia is now emerging. In this study, we have performed a genome-wide investigation of TREs in schizophrenia. Using genome sequence data from 1154 Swedish schizophrenia cases and 934 ancestry-matched population controls, we have detected genome-wide rare (<0.1% population frequency) TREs that have motifs with a length of 2-20 base pairs. We find that the proportion of individuals carrying rare TREs is significantly higher in the schizophrenia group. There is a significantly higher burden of rare TREs in schizophrenia cases than in controls in genic regions, particularly in postsynaptic genes, in genes overlapping brain expression quantitative trait loci, and in brain-expressed genes that are differentially expressed between schizophrenia cases and controls. We demonstrate that TRE-associated genes are more constrained and primarily impact synaptic and neuronal signaling functions. These results have been replicated in an independent Canadian sample that consisted of 252 schizophrenia cases of European ancestry and 222 ancestry-matched controls. Our results support the involvement of rare TREs in schizophrenia etiology.


Subject(s)
Autism Spectrum Disorder , Schizophrenia , Humans , Schizophrenia/genetics , Genome-Wide Association Study , Canada , Gene Frequency , Genetic Predisposition to Disease/genetics
9.
Nature ; 613(7942): 96-102, 2023 01.
Article in English | MEDLINE | ID: mdl-36517591

ABSTRACT

Expansion of a single repetitive DNA sequence, termed a tandem repeat (TR), is known to cause more than 50 diseases1,2. However, repeat expansions are often not explored beyond neurological and neurodegenerative disorders. In some cancers, mutations accumulate in short tracts of TRs, a phenomenon termed microsatellite instability; however, larger repeat expansions have not been systematically analysed in cancer3-8. Here we identified TR expansions in 2,622 cancer genomes spanning 29 cancer types. In seven cancer types, we found 160 recurrent repeat expansions (rREs), most of which (155/160) were subtype specific. We found that rREs were non-uniformly distributed in the genome with enrichment near candidate cis-regulatory elements, suggesting a potential role in gene regulation. One rRE, a GAAA-repeat expansion, located near a regulatory element in the first intron of UGT2B7 was detected in 34% of renal cell carcinoma samples and was validated by long-read DNA sequencing. Moreover, in preliminary experiments, treating cells that harbour this rRE with a GAAA-targeting molecule led to a dose-dependent decrease in cell proliferation. Overall, our results suggest that rREs may be an important but unexplored source of genetic variation in human cancer, and we provide a comprehensive catalogue for further study.


Subject(s)
DNA Repeat Expansion , Genome, Human , Neoplasms , Humans , Base Sequence , DNA Repeat Expansion/genetics , Genome, Human/genetics , Neoplasms/classification , Neoplasms/genetics , Neoplasms/pathology , Sequence Analysis, DNA , Gene Expression Regulation , Regulatory Elements, Transcriptional/genetics , Introns/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Proliferation/drug effects , Reproducibility of Results
10.
Cureus ; 15(12): e51140, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38283528

ABSTRACT

Purpose This article aims to report the first series of men with complete AZFc microduplications and their clinical and reproductive characteristics. Methods We sampled 3000 men who presented for reproductive urology evaluation from 2012-2020, of which 104 men underwent high-resolution Y-chromosome microarray testing, and five men were identified to have complete AZFc microduplications. Medical, surgical, and reproductive histories were obtained. Semen and hormonal parameters as well as response to fertility therapies were recorded. Results Five men were identified as having complete AZFc microduplications. The mean age was 33.75 years, representing 0.2% (5/3000) of men presenting for fertility investigation, 4.8% (5/104) of men undergoing microarray testing, and 21% (5/24) of men with AZFc abnormalities. Two of the men had prior undescended testicles and one had several autoimmune processes. The mean follicle-stimulating hormone (FSH) was 5.5 IU/L, luteinizing hormone (LH) 3.6 IU/L, and testosterone 14.56 nmol/L. One man was azoospermic, one man alternated between severe oligospermia and rare non-motile sperm, one had variable parameters, with one semen analysis demonstrating azoospermia and a second demonstrating a total motile sperm count (TMSC) of 4 ×106, one man was persistently oligospermic with TMSCs ranging 3.96-12.6 ×106, and one man initially had severe oligospermia, with a mean TMSC of 1.5 ×106, which increased to 21.7 ×106 after intervention (varicocele embolization, clomiphene citrate). This last man then fathered a spontaneous pregnancy. Conclusion AZFc complete microduplications are a rare cause of spermatogenic failure but not an uncommon form of AZFc abnormality. Clinically, they represent a heterogeneous group, having a variable reproductive potential. Cases should be managed on an individual basis.

11.
Nat Commun ; 13(1): 6463, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36309498

ABSTRACT

Defining different genetic subtypes of autism spectrum disorder (ASD) can enable the prediction of developmental outcomes. Based on minor physical and major congenital anomalies, we categorize 325 Canadian children with ASD into dysmorphic and nondysmorphic subgroups. We develop a method for calculating a patient-level, genome-wide rare variant score (GRVS) from whole-genome sequencing (WGS) data. GRVS is a sum of the number of variants in morphology-associated coding and non-coding regions, weighted by their effect sizes. Probands with dysmorphic ASD have a significantly higher GRVS compared to those with nondysmorphic ASD (P = 0.03). Using the polygenic transmission disequilibrium test, we observe an over-transmission of ASD-associated common variants in nondysmorphic ASD probands (P = 2.9 × 10-3). These findings replicate using WGS data from 442 ASD probands with accompanying morphology data from the Simons Simplex Collection. Our results provide support for an alternative genomic classification of ASD subgroups using morphology data, which may inform intervention protocols.


Subject(s)
Autism Spectrum Disorder , Child , Humans , Autism Spectrum Disorder/genetics , Canada/epidemiology , Genome , Multifactorial Inheritance/genetics , Whole Genome Sequencing , Genetic Predisposition to Disease
12.
Neuroophthalmology ; 46(4): 264-269, 2022.
Article in English | MEDLINE | ID: mdl-35859628

ABSTRACT

Suprasellar germinomas can present with non-diagnostic, or even normal results on imaging. The spectrum of reported cases ranges from normal imaging, thickened pituitary stalks, to discrete tumour growths. This similar phenomenon is less commonly seen in the pineal region, or bifocal germinomas, and the literature is sparse with only a few case series or reports mentioning a similar presentation of signs and symptoms preceding radiological evidence of diagnosis. We report a case of pineal germinoma presenting with dorsal midbrain syndrome with no evidence of tumour growth on initial imaging despite symptoms. For patients presenting with this clinical radiological latent period, follow-up imaging is useful to identify interval development of germinomas. This applies to patients with dorsal midbrain syndrome, or even other unexplained ophthalmoplegia, as the initial sign of pineal region germinoma, despite normal imaging.

13.
Front Genet ; 13: 812183, 2022.
Article in English | MEDLINE | ID: mdl-35495153

ABSTRACT

The 22q11.2 deletion is associated with >20-fold increased risk for schizophrenia. The presence of gene DGCR8 in the 22q11.2 deletion region has suggested microRNA (miRNA) dysregulation as possibly contributing to this risk. We therefore investigated the role of miRNA target genes in the context of previously identified genome-wide risk for schizophrenia conveyed by additional copy number variation (CNV) in 22q11.2 deletion syndrome (22q11.2DS). Using a cohort of individuals with 22q11.2DS and documented additional rare CNVs overlapping protein coding genes, we compared those with schizophrenia (n = 100) to those with no psychotic illness (n = 118), assessing for rare CNVs that overlapped experimentally supported miRNA target genes. We further characterized the contributing miRNA target genes using gene set enrichment analyses and identified the miRNAs most implicated. Consistent with our hypothesis, we found a significantly higher proportion of individuals in the schizophrenia than in the non-psychotic group to have an additional rare CNV that overlapped one or more miRNA target genes (odds ratio = 2.12, p = 0.0138). Gene set analyses identified an enrichment of FMRP targets and genes involved in nervous system development and postsynaptic density amongst these miRNA target genes in the schizophrenia group. The miRNAs most implicated included miR-17-5p, miR-34a-5p and miR-124-3p. These results provide initial correlational evidence in support of a possible role for miRNA perturbation involving genes affected by rare genome-wide CNVs in the elevated risk for schizophrenia in 22q11.2DS, consistent with the multi-hit and multi-layered genetic mechanisms implicated in this and other forms of schizophrenia.

14.
Mol Psychiatry ; 27(9): 3692-3698, 2022 09.
Article in English | MEDLINE | ID: mdl-35546631

ABSTRACT

Tandem repeat expansions (TREs) can cause neurological diseases but their impact in schizophrenia is unclear. Here we analyzed genome sequences of adults with schizophrenia and found that they have a higher burden of TREs that are near exons and rare in the general population, compared with non-psychiatric controls. These TREs are disproportionately found at loci known to be associated with schizophrenia from genome-wide association studies, in individuals with clinically-relevant genetic variants at other schizophrenia loci, and in families where multiple individuals have schizophrenia. We showed that rare TREs in schizophrenia may impact synaptic functions by disrupting the splicing process of their associated genes in a loss-of-function manner. Our findings support the involvement of genome-wide rare TREs in the polygenic nature of schizophrenia.


Subject(s)
Schizophrenia , Adult , Humans , Schizophrenia/genetics , Schizophrenia/epidemiology , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Multifactorial Inheritance/genetics , Tandem Repeat Sequences , Polymorphism, Single Nucleotide/genetics
15.
Genome Res ; 32(1): 1-27, 2022 01.
Article in English | MEDLINE | ID: mdl-34965938

ABSTRACT

Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.


Subject(s)
Genomics , Tandem Repeat Sequences , Animals , Base Sequence , Dogs , Humans , Sequence Analysis, DNA , Tandem Repeat Sequences/genetics
16.
Cell Rep ; 37(10): 110078, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34879276

ABSTRACT

Ongoing inchworm-like CAG and CGG repeat expansions in brains, arising by aberrant processing of slipped DNAs, may drive Huntington's disease, fragile X syndrome, and autism. FAN1 nuclease modifies hyper-expansion rates by unknown means. We show that FAN1, through iterative cycles, binds, dimerizes, and cleaves slipped DNAs, yielding striking exo-nuclease pauses along slip-outs: 5'-C↓A↓GC↓A↓G-3' and 5'-C↓T↓G↓C↓T↓G-3'. CAG excision is slower than CTG and requires intra-strand A·A and T·T mismatches. Fully paired hairpins arrested excision, whereas disease-delaying CAA interruptions further slowed excision. Endo-nucleolytic cleavage is insensitive to slip-outs. Rare FAN1 variants are found in individuals with autism with CGG/CCG expansions, and CGG/CCG slip-outs show exo-nuclease pauses. The slip-out-specific ligand, naphthyridine-azaquinolone, which induces contractions of expanded repeats in vivo, requires FAN1 for its effect, and protects slip-outs from FAN1 exo-, but not endo-, nucleolytic digestion. FAN1's inchworm pausing of slip-out excision rates is well suited to modify inchworm expansion rates, which modify disease onset and progression.


Subject(s)
Autism Spectrum Disorder/genetics , DNA Mismatch Repair , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/metabolism , Genomic Instability , Huntington Disease/genetics , Multifunctional Enzymes/metabolism , Spinocerebellar Ataxias/genetics , Trinucleotide Repeat Expansion , Animals , Autism Spectrum Disorder/enzymology , Cell Line, Tumor , Disease Progression , Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , Genetic Predisposition to Disease , Humans , Huntington Disease/enzymology , Multifunctional Enzymes/genetics , Mutation , Nucleic Acid Conformation , Phenotype , Protein Binding , Sf9 Cells , Spinocerebellar Ataxias/enzymology
17.
Brain Commun ; 3(3): fcab207, 2021.
Article in English | MEDLINE | ID: mdl-34622207

ABSTRACT

Epilepsies are a group of common neurological disorders with a substantial genetic basis. Despite this, the molecular diagnosis of epilepsies remains challenging due to its heterogeneity. Studies utilizing whole-genome sequencing may provide additional insights into genetic causes of epilepsies of unknown aetiology. Whole-genome sequencing was used to evaluate a cohort of adults with unexplained developmental and epileptic encephalopathies (n = 30), for whom prior genetic tests, including whole-exome sequencing in some cases, were negative or inconclusive. Rare single nucleotide variants, insertions/deletions, copy number variants and tandem repeat expansions were analysed. Seven pathogenic or likely pathogenic single nucleotide variants, and two pathogenic deleterious copy number variants were identified in nine patients (32.1% of the cohort). One of the copy number variants, identified in a patient with Lennox-Gastaut syndrome, was too small to be detected by chromosomal microarray techniques. We also identified two tandem repeat expansions with clinical implications in two other patients with Lennox-Gastaut syndrome: a CGG repeat expansion in the 5'untranslated region of DIP2B, and a CTG expansion in ATXN8OS (previously implicated in spinocerebellar ataxia type 8). Three patients had KCNA2 pathogenic variants. One of them died of sudden unexpected death in epilepsy. The other two patients had, in addition to a KCNA2 variant, a second de novo variant impacting potential epilepsy-relevant genes (KCNIP4 and UBR5). Overall, whole-genome sequencing provided a genetic explanation in 32.1% of the total cohort. This is also the first report of coding and non-coding tandem repeat expansions identified in patients with Lennox-Gastaut syndrome. This study demonstrates that using whole-genome sequencing, the examination of multiple types of rare genetic variation, including those found in the non-coding region of the genome, can help resolve unexplained epilepsies.

18.
J Pediatr ; 235: 26-33.e2, 2021 08.
Article in English | MEDLINE | ID: mdl-33689709

ABSTRACT

OBJECTIVE: To evaluate the impact of prophylactic indomethacin on early death (<10 days after birth) or severe neurologic injury and on early death or spontaneous intestinal perforation by completed weeks of gestational age in neonates born <29 weeks of gestation. STUDY DESIGN: This was a multicenter, retrospective cohort study of neonates (n = 12 515) born at 236/7 weeks of gestational age, admitted to neonatal intensive care units participating in the Canadian Neonatal Network who received prophylactic indomethacin started within the first 12 hours after birth. Univariate and multivariate analysis compared the composite outcomes of early death or severe neurologic injury and early death or spontaneous intestinal perforation. RESULTS: Of 12 515 eligible neonates, 1435 (11.5%) were exposed to prophylactic indomethacin; recipients were of lower gestational age and birth weight and had greater severity of illness (Score of Neonatal Acute Physiology with Perinatal Extension) on admission compared with nonrecipients. After we adjusted for confounders, prophylactic indomethacin was associated with reduced odds of early death or severe neurologic injury and early death or spontaneous intestinal perforation in neonates born at 23-24 weeks of gestational age. However, prophylactic indomethacin was associated with increased odds of early mortality or spontaneous intestinal perforation for neonates born at 26-28 weeks of gestational age. CONCLUSIONS: Prophylactic indomethacin use was associated with benefit in neonates born at 23-24 weeks of gestational age, but with harm at 26-28 weeks of gestational age. Given the observation of significantly improved survival, a randomized controlled trial is needed to investigate the effect of prophylactic indomethacin in babies born at 23-25 weeks of gestational age.


Subject(s)
Brain Injuries , Intestinal Perforation , Canada , Female , Gestational Age , Humans , Indomethacin , Infant , Infant, Extremely Premature , Infant, Newborn , Intestinal Perforation/prevention & control , Pregnancy , Retrospective Studies , Steroids
19.
Transl Psychiatry ; 11(1): 84, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33526774

ABSTRACT

The range of genetic variation with potential clinical implications in schizophrenia, beyond rare copy number variants (CNVs), remains uncertain. We therefore analyzed genome sequencing data for 259 unrelated adults with schizophrenia from a well-characterized community-based cohort previously examined with chromosomal microarray for CNVs (none with 22q11.2 deletions). We analyzed these genomes for rare high-impact variants considered causal for neurodevelopmental disorders, including single-nucleotide variants (SNVs) and small insertions/deletions (indels), for potential clinical relevance based on findings for neurodevelopmental disorders. Also, we investigated a novel variant type, tandem repeat expansions (TREs), in 45 loci known to be associated with monogenic neurological diseases. We found several of these variants in this schizophrenia population suggesting that these variants have a wider clinical spectrum than previously thought. In addition to known pathogenic CNVs, we identified 11 (4.3%) individuals with clinically relevant SNVs/indels in genes converging on schizophrenia-relevant pathways. Clinical yield was significantly enriched in females and in those with broadly defined learning/intellectual disabilities. Genome analyses also identified variants with potential clinical implications, including TREs (one in DMPK; two in ATXN8OS) and ultra-rare loss-of-function SNVs in ZMYM2 (a novel candidate gene for schizophrenia). Of the 233 individuals with no pathogenic CNVs, we identified rare high-impact variants (i.e., clinically relevant or with potential clinical implications) for 14 individuals (6.0%); some had multiple rare high-impact variants. Mean schizophrenia polygenic risk score was similar between individuals with and without clinically relevant rare genetic variation; common variants were not sufficient for clinical application. These findings broaden the individual and global picture of clinically relevant genetic risk in schizophrenia, and suggest the potential translational value of genome sequencing as a single genetic technology for schizophrenia.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Schizophrenia , Adult , Cohort Studies , DNA Copy Number Variations , Female , Genetic Predisposition to Disease , Humans , Neurodevelopmental Disorders/genetics , Schizophrenia/genetics
20.
Orphanet J Rare Dis ; 16(1): 6, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407644

ABSTRACT

BACKGROUND: 7q11.23 duplication (Dup7) is one of the most frequent recurrent copy number variants (CNVs) in individuals with autism spectrum disorder (ASD), but based on gold-standard assessments, only 19% of Dup7 carriers have ASD, suggesting that additional genetic factors are necessary to manifest the ASD phenotype. To assess the contribution of additional genetic variants to the Dup7 phenotype, we conducted whole-genome sequencing analysis of 20 Dup7 carriers: nine with ASD (Dup7-ASD) and 11 without ASD (Dup7-non-ASD). RESULTS: We identified three rare variants of potential clinical relevance for ASD: a 1q21.1 microdeletion (Dup7-non-ASD) and two deletions which disrupted IMMP2L (one Dup7-ASD, one Dup7-non-ASD). There were no significant differences in gene-set or pathway variant burden between the Dup7-ASD and Dup7-non-ASD groups. However, overall intellectual ability negatively correlated with the number of rare loss-of-function variants present in nervous system development and membrane component pathways, and adaptive behaviour standard scores negatively correlated with the number of low-frequency likely-damaging missense variants found in genes expressed in the prenatal human brain. ASD severity positively correlated with the number of low frequency loss-of-function variants impacting genes expressed at low levels in the brain, and genes with a low level of intolerance. CONCLUSIONS: Our study suggests that in the presence of the same pathogenic Dup7 variant, rare and low frequency genetic variants act additively to contribute to components of the overall Dup7 phenotype.


Subject(s)
Autism Spectrum Disorder , Autism Spectrum Disorder/genetics , Chromosome Deletion , DNA Copy Number Variations/genetics , Female , Genomics , Humans , Phenotype , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL