Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
Add more filters










Publication year range
1.
Adv Biochem Eng Biotechnol ; 159: 103-128, 2017.
Article in English | MEDLINE | ID: mdl-27872960

ABSTRACT

Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and L-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.


Subject(s)
Amino Acids, Branched-Chain/biosynthesis , Amino Acids, Branched-Chain/genetics , Amino Acids/biosynthesis , Bacterial Physiological Phenomena , Bioreactors/microbiology , Metabolic Engineering/methods , Amino Acids/genetics , Bacterial Proteins/physiology , Biological Products/metabolism , Fermentation/physiology , Genetic Enhancement/methods
2.
Appl Environ Microbiol ; 81(12): 4173-83, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25862223

ABSTRACT

The Corynebacterium alkanolyticum xylEFGD gene cluster comprises the xylD gene that encodes an intracellular ß-xylosidase next to the xylEFG operon encoding a substrate-binding protein and two membrane permease proteins of a xyloside ABC transporter. Cloning of the cluster revealed a recombinant ß-xylosidase of moderately high activity (turnover for p-nitrophenyl-ß-d-xylopyranoside of 111 ± 4 s(-1)), weak α-l-arabinofuranosidase activity (turnover for p-nitrophenyl-α-l-arabinofuranoside of 5 ± 1 s(-1)), and high tolerance to product inhibition (Ki for xylose of 67.6 ± 2.6 mM). Heterologous expression of the entire cluster under the control of the strong constitutive tac promoter in the Corynebacterium glutamicum xylose-fermenting strain X1 enabled the resultant strain X1EFGD to rapidly utilize not only xylooligosaccharides but also arabino-xylooligosaccharides. The ability to utilize arabino-xylooligosaccharides depended on cgR_2369, a gene encoding a multitask ATP-binding protein. Heterologous expression of the contiguous xylD gene in strain X1 led to strain X1D with 10-fold greater ß-xylosidase activity than strain X1EFGD, albeit with a total loss of arabino-xylooligosaccharide utilization ability and only half the ability to utilize xylooligosaccharides. The findings suggest some inherent ability of C. glutamicum to take up xylooligosaccharides, an ability that is enhanced by in the presence of a functional xylEFG-encoded xyloside ABC transporter. The finding that xylEFG imparts nonnative ability to take up arabino-xylooligosaccharides should be useful in constructing industrial strains with efficient fermentation of arabinoxylan, a major component of lignocellulosic biomass hydrolysates.


Subject(s)
ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Corynebacterium glutamicum/enzymology , Corynebacterium glutamicum/genetics , Corynebacterium/enzymology , Corynebacterium/genetics , Glycosides/metabolism , Xylosidases/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Carrier Proteins/genetics , Cloning, Molecular , Corynebacterium/growth & development , Corynebacterium/metabolism , Corynebacterium glutamicum/growth & development , Corynebacterium glutamicum/metabolism , Fermentation , Glucuronates/metabolism , Glycoside Hydrolases/metabolism , Kinetics , Molecular Sequence Data , Multigene Family , Oligosaccharides/metabolism , Operon , Xylans/metabolism , Xylose/metabolism , Xylosidases/genetics
3.
Appl Microbiol Biotechnol ; 99(13): 5573-82, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25808520

ABSTRACT

Rapid sugar consumption is important for the microbial production of chemicals and fuels. Here, we show that overexpression of the NADH dehydrogenase gene (ndh) increased glucose consumption rate in Corynebacterium glutamicum under oxygen-deprived conditions through investigating the relationship between the glucose consumption rate and intracellular NADH/NAD(+) ratio in various mutant strains. The NADH/NAD(+) ratio was strongly repressed under oxygen deprivation when glucose consumption was accelerated by the addition of pyruvate or sodium hydrogen carbonate. Overexpression of the ndh gene in the wild-type strain under oxygen deprivation decreased the NADH/NAD(+) ratio from 0.32 to 0.13, whereas the glucose consumption rate increased by 27%. Similarly, in phosphoenolpyruvate carboxylase gene (ppc)- or malate dehydrogenase gene (mdh)-deficient strains, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.66 to 0.37 and 2.20 to 0.57, respectively, whereas the glucose consumption rate increased by 57 and 330%, respectively. However, in a lactate dehydrogenase gene (L-ldhA)-deficient strain, although the NADH/NAD(+) ratio decreased from 5.62 to 1.13, the glucose consumption rate was not markedly altered. In a tailored D-lactate-producing strain, which lacked ppc and L-ldhA genes, but expressed D-ldhA from Lactobacillus delbrueckii, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.77 to 0.56, and increased the glucose consumption rate by 50%. Overall, the glucose consumption rate was found to be inversely proportional to the NADH/NAD(+) ratio in C. glutamicum cultured under oxygen deprivation. These findings could provide an option to increase the productivity of chemicals and fuels under oxygen deprivation.


Subject(s)
Corynebacterium glutamicum/metabolism , Glucose/metabolism , Oxygen/metabolism , Corynebacterium glutamicum/enzymology , Corynebacterium glutamicum/genetics , Gene Deletion , Gene Expression , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , NAD/metabolism , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Oxidation-Reduction , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Pyruvic Acid/metabolism , Sodium Bicarbonate/metabolism
4.
Appl Microbiol Biotechnol ; 99(11): 4679-89, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25820644

ABSTRACT

We previously reported on the impacts of the overexpression of individual genes of the glycolytic pathway encoding glucokinase (GLK), glyceraldehyde phosphate dehydrogenase (GAPDH), phosphofructokinase (PFK), triosephosphate isomerase (TPI), and bisphosphate aldolase (FBA) on D-lactate productivity in Corynebacterium glutamicum under oxygen-deprived conditions. Searching for synergies, in the current study, we simultaneously overexpressed the five glycolytic genes in a stepwise fashion to evaluate the effect of the cumulative overexpression of glycolytic genes on D-lactate production. Interestingly, the final D-lactate concentration markedly differed depending on whether or not the PFK encoding gene was overexpressed when combined with overexpressing other glycolytic genes. The simultaneous overexpression of the GLK, GAPDH, TPI, and FBA encoding genes led to the highest initial D-lactate concentration at 10 h. However, this particular recombinant strain dramatically slowed producing D-lactate when a concentration of 1300 mM was reached, typically after 32 h. In contrast, the strain overexpressing the PFK encoding gene together with the GLK, GAPDH, TPI, and FBA encoding genes showed 12.7 % lower initial D-lactate concentration at 10 h than that observed with the strain overexpressing the genes coding for GLK, GAPDH, TPI, and FBA. However, this recombinant strain continued to produce D-lactate after 32 h, reaching 2169 mM after a mineral salts medium bioprocess incubation period of 80 h. These results suggest that overexpression of the PFK encoding gene is essential for achieving high production of D-lactate. Our findings provide interesting options to explore for using C. glutamicum for cost-efficient production of D-lactate at the industrial scale.


Subject(s)
Corynebacterium glutamicum/enzymology , Corynebacterium glutamicum/metabolism , Lactic Acid/metabolism , Oxygen/metabolism , Phosphofructokinases/metabolism , Corynebacterium glutamicum/genetics , Culture Media/chemistry , Gene Expression , Phosphofructokinases/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Time Factors
5.
Appl Microbiol Biotechnol ; 99(8): 3505-17, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25592736

ABSTRACT

In Corynebacterium glutamicum R, CsoR acts as a transcriptional repressor not only of the cognate copA-csoR operon but also of the copZ1-copB-cgR_0126 operon. It is predicted that copA and copB encode P-type ATPases for copper efflux and copZ1 encodes a metallochaperone. Here, a CsoR-binding motif was found upstream of another copZ-like gene, copZ2, and the in vitro binding of the CsoR protein to its promoter was confirmed. The monocistronic copZ2 transcript was upregulated by excess copper in a CsoR-dependent manner. Among the extended CsoR regulon, deletion of copA, but not of copB, copZ1, or copZ2, resulted in decreased resistance to copper, indicating a major role of the CopA copper exporter in the multilayered systems for copper homeostasis. A redundant role of copZ1 and copZ2 in copper resistance was also indicated by double deletion of these genes. The copper-dependent activation of the copA, copZ1, and copZ2 promoters was confirmed by lacZ reporter assays, consistent with the coordinated derepression of the three transcriptional units. The copZ1 promoter activity showed the highest responsiveness to copper and was also induced by excess zinc and nickel. Furthermore, zinc-inducible expression observed for the CsoR-regulated genes was independent of Zur, recently found to uniquely act as a transcriptional repressor of zinc efflux genes. These results implied complicated cross talk between homeostasis of multiple transition metals.


Subject(s)
Copper/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Gene Expression Regulation, Bacterial , Homeostasis , Repressor Proteins/metabolism , Binding Sites , Copper/toxicity , Corynebacterium glutamicum/drug effects , Corynebacterium glutamicum/growth & development , DNA, Bacterial/genetics , Gene Deletion , Operon , Promoter Regions, Genetic , Protein Binding , Repressor Proteins/genetics
6.
Appl Environ Microbiol ; 81(7): 2284-98, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25595768

ABSTRACT

Reinforcing microbial thermotolerance is a strategy to enable fermentation with flexible temperature settings and thereby to save cooling costs. Here, we report on adaptive laboratory evolution (ALE) of the amino acid-producing bacterium Corynebacterium glutamicum under thermal stress. After 65 days of serial passage of the transgenic strain GLY3, in which the glycolytic pathway is optimized for alanine production under oxygen deprivation, three strains adapted to supraoptimal temperatures were isolated, and all the mutations they acquired were identified by whole-genome resequencing. Of the 21 mutations common to the three strains, one large deletion and two missense mutations were found to promote growth of the parental strain under thermal stress. Additive effects on thermotolerance were observed among these mutations, and the combination of the deletion with the missense mutation on otsA, encoding a trehalose-6-phosphate synthase, allowed the parental strain to overcome the upper limit of growth temperature. Surprisingly, the three evolved strains acquired cross-tolerance for isobutanol, which turned out to be partly attributable to the genomic deletion associated with the enhanced thermotolerance. The deletion involved loss of two transgenes, pfk and pyk, encoding the glycolytic enzymes, in addition to six native genes, and elimination of the transgenes, but not the native genes, was shown to account for the positive effects on thermal and solvent stress tolerance, implying a link between energy-producing metabolism and bacterial stress tolerance. Overall, the present study provides evidence that ALE can be a powerful tool to refine the phenotype of C. glutamicum and to investigate the molecular bases of stress tolerance.


Subject(s)
Adaptation, Biological , Corynebacterium glutamicum/drug effects , Corynebacterium glutamicum/radiation effects , Hot Temperature , Solvents/toxicity , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/physiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Expression Profiling , Genome, Bacterial , Molecular Sequence Data , Mutation, Missense , Organisms, Genetically Modified/genetics , Organisms, Genetically Modified/physiology , Sequence Analysis, DNA , Sequence Deletion , Serial Passage
7.
Microbiology (Reading) ; 161(Pt 2): 254-263, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25406451

ABSTRACT

Shikimate can be utilized as the sole source of carbon and energy of Corynebacterium glutamicum. Although biosynthesis and degradation of shikimate are well characterized in C. glutamicum, the transport of shikimate has hardly been studied. A mutant strain deficient in cgR_2523 loses the ability to grow on shikimate as well as to consume extracellular shikimate, indicating that the gene is involved in shikimate utilization (designated shiA). The hydropathy profile of the deduced amino acid sequence indicates that ShiA belongs to the metabolite/proton symporter family, which is a member of the major facilitator superfamily. An accumulation assay showed that the uptake of shikimate was hardly detected in the shiA-deficient strain, but was markedly enhanced in a shiA-expressing strain. These results suggested that the uptake of shikimate was mainly mediated by the shikimate transporter encoded by shiA. The level of shiA mRNA induction by shikimate was significantly decreased by the disruption of cgR_2524 (designated shiR), which is located immediately upstream of shiA and encodes a LysR-type transcriptional regulator, suggesting that ShiR acts as an activator of shiA. To our knowledge, this is the first report in Gram-positive bacteria of a shikimate transporter and its regulation.


Subject(s)
Bacterial Proteins/genetics , Corynebacterium glutamicum/metabolism , Membrane Transport Proteins/genetics , Shikimic Acid/metabolism , Bacterial Proteins/metabolism , Corynebacterium glutamicum/genetics , Gene Expression Regulation, Bacterial , Membrane Transport Proteins/metabolism
8.
Appl Microbiol Biotechnol ; 99(3): 1165-72, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25421564

ABSTRACT

Recombinant Corynebacterium glutamicum harboring genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) can produce ethanol under oxygen deprivation. We investigated the effects of elevating the expression levels of glycolytic genes, as well as pdc and adhB, on ethanol production. Overexpression of four glycolytic genes (pgi, pfkA, gapA, and pyk) in C. glutamicum significantly increased the rate of ethanol production. Overexpression of tpi, encoding triosephosphate isomerase, further enhanced productivity. Elevated expression of pdc and adhB increased ethanol yield, but not the rate of production. Fed-batch fermentation using an optimized strain resulted in ethanol production of 119 g/L from 245 g/L glucose with a yield of 95% of the theoretical maximum. Further metabolic engineering, including integration of the genes for xylose and arabinose metabolism, enabled consumption of glucose, xylose, and arabinose, and ethanol production (83 g/L) at a yield of 90 %. This study demonstrated that C. glutamicum has significant potential for the production of cellulosic ethanol.


Subject(s)
Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Ethanol/metabolism , Metabolic Engineering , Batch Cell Culture Techniques , Gene Expression , Genes, Bacterial , Metabolic Networks and Pathways/genetics
9.
J Bacteriol ; 197(3): 483-96, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25404703

ABSTRACT

The extracytoplasmic function sigma factor σ(H) is responsible for the heat and oxidative stress response in Corynebacterium glutamicum. Due to the hierarchical nature of the regulatory network, previous transcriptome analyses have not been able to discriminate between direct and indirect targets of σ(H). Here, we determined the direct genome-wide targets of σ(H) using chromatin immunoprecipitation with microarray technology (ChIP-chip) for analysis of a deletion mutant of rshA, encoding an anti-σ factor of σ(H). Seventy-five σ(H)-dependent promoters, including 39 new ones, were identified. σ(H)-dependent, heat-inducible transcripts for several of the new targets, including ilvD encoding a labile Fe-S cluster enzyme, dihydroxy-acid dehydratase, were detected, and their 5' ends were mapped to the σ(H)-dependent promoters identified. Interestingly, functional internal σ(H)-dependent promoters were found in operon-like gene clusters involved in the pentose phosphate pathway, riboflavin biosynthesis, and Zn uptake. Accordingly, deletion of rshA resulted in hyperproduction of riboflavin and affected expression of Zn-responsive genes, possibly through intracellular Zn overload, indicating new physiological roles of σ(H). Furthermore, sigA encoding the primary σ factor was identified as a new target of σ(H). Reporter assays demonstrated that the σ(H)-dependent promoter upstream of sigA was highly heat inducible but much weaker than the known σ(A)-dependent one. Our ChIP-chip analysis also detected the σ(H)-dependent promoters upstream of rshA within the sigH-rshA operon and of sigB encoding a group 2 σ factor, supporting the previous findings of their σ(H)-dependent expression. Taken together, these results reveal an additional layer of the sigma factor regulatory network in C. glutamicum.


Subject(s)
Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Sigma Factor/genetics , Sigma Factor/metabolism , Chromatin Immunoprecipitation , Gene Deletion , Metabolic Networks and Pathways/genetics , Microarray Analysis , Multigene Family , Operon , Promoter Regions, Genetic , Protein Binding
10.
Appl Microbiol Biotechnol ; 99(3): 1427-33, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25363556

ABSTRACT

Corynebacterium glutamicum can consume glucose to excrete glycerol under oxygen deprivation. Although glycerol synthesis from 1,3-dihydroxyacetone (DHA) has been speculated, no direct evidence has yet been provided in C. glutamicum. Enzymatic and genetic investigations here indicate that the glycerol is largely produced from DHA and, unexpectedly, the reaction is catalyzed by (S,S)-butanediol dehydrogenase (ButA) that inherently catalyzes the interconversion between S-acetoin and (S,S)-2,3-butanediol. Consequently, the following pathway for glycerol biosynthesis in the bacterium emerges: dihydroxyacetone phosphate is dephosphorylated by HdpA to DHA, which is subsequently reduced to glycerol by ButA. This study emphasizes the importance of promiscuous activity of the enzyme in vivo.


Subject(s)
Alcohol Oxidoreductases/metabolism , Bacterial Proteins/metabolism , Corynebacterium glutamicum/enzymology , Glycerol/metabolism , Oxygen/metabolism , Alcohol Oxidoreductases/genetics , Bacterial Proteins/genetics , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Dihydroxyacetone/metabolism
11.
J Bacteriol ; 196(18): 3249-58, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24982307

ABSTRACT

The transcriptional regulator GntR1 downregulates the genes for gluconate catabolism and pentose phosphate pathway in Corynebacterium glutamicum. Gluconate lowers the DNA binding affinity of GntR1, which is probably the mechanism of gluconate-dependent induction of these genes. In addition, GntR1 positively regulates ptsG, a gene encoding a major glucose transporter, and pck, a gene encoding phosphoenolpyruvate carboxykinase. Here, we searched for the new target of GntR1 on a genome-wide scale by chromatin immunoprecipitation in conjunction with microarray (ChIP-chip) analysis. This analysis identified 56 in vivo GntR1 binding sites, of which 7 sites were previously reported. The newly identified GntR1 sites include the upstream regions of carbon metabolism genes such as pyk, maeB, gapB, and icd, encoding pyruvate kinase, malic enzyme, glyceraldehyde 3-phosphate dehydrogenase B, and isocitrate dehydrogenase, respectively. Binding of GntR1 to the promoter region of these genes was confirmed by electrophoretic mobility shift assay. The activity of the icd, gapB, and maeB promoters was reduced by the mutation at the GntR1 binding site, in contrast to the pyk promoter activity, which was increased, indicating that GntR1 is a transcriptional activator of icd, gapB, and maeB and is a repressor of pyk. Thus, it is likely that GntR1 stimulates glucose uptake by inducing the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) gene while repressing pyk to increase PEP availability in the absence of gluconate. Repression of zwf and gnd may reduce the NADPH supply, which may be compensated by the induction of maeB and icd. Upregulation of icd, gapB, and maeB and downregulation of pyk by GntR1 probably support gluconeogenesis.


Subject(s)
Bacterial Proteins/metabolism , Corynebacterium glutamicum/metabolism , Gene Expression Regulation, Bacterial/physiology , Genome, Bacterial , Transcription, Genetic/physiology , Bacterial Proteins/genetics , Base Sequence , Binding Sites , Corynebacterium glutamicum/genetics , DNA, Bacterial , Promoter Regions, Genetic , Protein Binding , Regulatory Elements, Transcriptional
12.
J Bacteriol ; 196(12): 2242-54, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24706742

ABSTRACT

The Corynebacterium glutamicum ATCC 31831 araBDA operon consists of three l-arabinose catabolic genes, upstream of which the galM, araR, and araE genes are located in opposite orientation. araR encodes a LacI-type transcriptional regulator that negatively regulates the l-arabinose-inducible expression of araBDA and araE (encoding an l-arabinose transporter), through a mechanism that has yet to be identified. Here we show that the AraR protein binds in vitro to three sites: one upstream of araBDA and two upstream of araE. We verify that a 16-bp consensus palindromic sequence is essential for binding of AraR, using a series of mutations introduced upstream of araB in electrophoretic mobility shift assays. Moreover, the DNA-binding activity of AraR is reduced by l-arabinose. We employ quantitative reverse transcription-PCR (qRT-PCR) analyses using various mutant strains deficient in l-arabinose utilization genes to demonstrate that the prominent upregulation of araBDA and araE within 5 min of l-arabinose supplementation is dependent on the uptake but independent of the catabolism of l-arabinose. Similar expression patterns, together with the upregulation by araR disruption without l-arabinose, are evident with the apparent galM-araR operon, although attendant changes in expression levels are much smaller than those realized with the expression of araBDA and araE. The AraR-binding site upstream of araB overlaps the -10 region of the divergent galM promoter. These observations indicate that AraR acts as a transcriptional repressor of araBDA, araE, and galM-araR and that l-arabinose acts as an intracellular negative effector of the AraR-dependent regulation.


Subject(s)
Arabinose/metabolism , Bacterial Proteins/metabolism , Corynebacterium glutamicum/metabolism , Gene Expression Regulation, Bacterial/physiology , Lac Repressors/metabolism , Bacterial Proteins/genetics , Base Sequence , Corynebacterium glutamicum/genetics , Lac Repressors/genetics , Protein Binding
13.
Mol Microbiol ; 92(2): 356-68, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24674055

ABSTRACT

The qsu operon of Corynebacterium glutamicum comprises four genes (qsuABCD) that underpin the microorganism's quinate/shikimate utilization pathways. The genes encode enzymes that catalyse reactions at the metabolic branch point between the biosynthesis route for synthesis of aromatic compounds and the catabolic route for degradation of quinate and shikimate for energy production. A qsuR gene located immediately upstream of qsuA encodes a protein (QsuR) which activates the operon in the presence of quinate or shikimate. Three observations support chorismate, an intermediate of the biosynthesis route, as a direct effector of QsuR: First, induction of qsuA mRNA in the presence of either quinate or shikimate disappears upon deletion of the gene encoding chorismate synthase. Second, chorismate accumulates when the operon is induced. Third, a DNase I-protected segment by QsuR is shortened in the presence of chorismate. The QsuR tetramer senses the accumulation of chorismate and activates qsu genes that promote the quinate/shikimate catabolic instead of the aromatic compounds biosynthetic route. Such chorismate-dependent control of carbon flow has not been previously described.


Subject(s)
Chorismic Acid/metabolism , Corynebacterium glutamicum/genetics , Gene Expression Regulation, Bacterial/drug effects , Metabolic Networks and Pathways/genetics , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Corynebacterium glutamicum/metabolism , DNA Footprinting , Protein Binding , Quinic Acid/metabolism , Shikimic Acid/metabolism
14.
Appl Microbiol Biotechnol ; 98(9): 4159-68, 2014 May.
Article in English | MEDLINE | ID: mdl-24531272

ABSTRACT

Riboflavin is a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which work as cofactors of numerous enzymes. Understanding the supply system of these cofactors in bacteria, particularly those used for industrial production of value added chemicals, is important given the pivotal role the cofactors play in substrate metabolism. In this work, we examined the effect of disruption of riboflavin utilization genes on cell growth, cytoplasmic flavin levels, and expression of riboflavin transporter in Corynebacterium glutamicum. Disruption of the ribA gene that encodes bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase in C. glutamicum suppressed growth in the absence of supplemental riboflavin. The growth was fully recovered upon supplementation with 1 µM riboflavin, albeit at reduced intracellular concentrations of FMN and FAD during the log phase. Concomitant disruption of the ribA and ribM gene that encodes a riboflavin transporter exacerbated supplemental riboflavin requirement from 1 µM to 50 µM. RibM expression in FMN-rich cells was about 100-fold lower than that in FMN-limited cells. Mutations in putative FMN-riboswitch present immediately upstream of the ribM gene abolished the FMN response. This 5'UTR sequence of ribM constitutes a functional FMN-riboswitch in C. glutamicum.


Subject(s)
Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Flavin Mononucleotide/metabolism , Gene Expression Regulation, Bacterial/drug effects , Membrane Transport Proteins/metabolism , Riboflavin/metabolism , Riboswitch , 5' Untranslated Regions , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Corynebacterium glutamicum/growth & development , Culture Media/chemistry , Gene Expression , Gene Knockout Techniques , Membrane Transport Proteins/genetics
15.
J Bacteriol ; 196(1): 60-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24142248

ABSTRACT

Corynebacterium glutamicum ArnR is a novel transcriptional regulator that represses expression of the nitrate reductase operon narKGHJI and the nitric oxide (NO)-detoxifying flavohemoglobin gene hmp under aerobic conditions. In a previous study, we showed that ArnR-mediated repression is relieved during anaerobic nitrate respiration, but we could not pinpoint the specific signal that ArnR senses. In this study, we show that in the absence of nitrate, ArnR-mediated repression is maintained under anaerobic conditions. The derepression in response to nitrate is eliminated by disruption of narG, suggesting that ArnR senses nitrate derivatives generated during nitrate respiration. Specifically, the hmp gene is upregulated in the presence of nitrite or nitric oxide (NO) in an ArnR-dependent manner, although the response of narK appears to be greatly affected by ArnR-independent regulation. In vitro binding of ArnR to the narK and hmp promoter regions is more strongly inhibited by NO than by nitrite. We previously showed that the UV-visible spectrum of ArnR is typical of a Fe-S cluster-containing protein. Site-directed mutagenesis of each of three cysteine residues, which are possibly involved in coordination of the cofactor in the ArnR protein, results in loss of the binding of this protein to its target promoters in vitro and eliminates the repression of the target genes in vivo under aerobic conditions. These observations suggest that the cofactor coordinated by these three cysteine residues in the ArnR protein plays a critical role in the NO-responsive expression of the narKGHJI operon and the hmp gene.


Subject(s)
Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Dihydropteridine Reductase/biosynthesis , Gene Expression Regulation, Bacterial/drug effects , Nitrate Reductase/biosynthesis , Nitric Oxide/metabolism , Repressor Proteins/metabolism , Aerobiosis , Anaerobiosis , DNA Mutational Analysis , Mutagenesis, Site-Directed , Nitrites/metabolism , Operon , Repressor Proteins/genetics
16.
Biotechnol Bioeng ; 110(11): 2938-48, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23737329

ABSTRACT

Microbial production of isobutanol is made difficult by the chemical's high cell toxicity. Corynebacterium glutamicum, inherently one of the more isobutanol-tolerant industrial microorganisms, exhibits unprecedented productivity under oxygen deprivation, potentially allowing for high productivity of such toxic chemicals as isobutanol. Here, we show that development of C. glutamicum strains proficient in isobutanol production depends not only on modulating the activity of 2-keto acid decarboxylase (KDC) and isobutanol dehydrogenase (IBDH) and suppressing by-product formation, but also on optimizing the production process to eschew product inhibition. Isobutanol production under oxygen deprivation reached 343 mM (3.2% v/v) in strain IBU5 expressing kivd (encoding KDC) under the control of ldhA promoter and adhP (encoding IBDH from Escherichia coli MG1655) under the control of gapA promoter. This productivity is double the previously reported best productivity of 1.6% (v/v) and exceeds the 2.5% (v/v) limit beyond which cell growth becomes too severely suppressed. Irrespective, a cumulative 56.5% improvement on yield was possible with the combined effects of disruption of the ppc gene, encoding phosphoenolpyruvate carboxylase (PEPC), use of a NAD⁺-specific mutant acetohydroxyacid isomeroreductase (AHAIR), and overexpression of select glycolytic genes. Using oleyl alcohol to continuously extract the isobutanol from reaction mixture and tripling the cell concentration in the reaction mixture to 60 g dry cell/L stretched the yield to 78.1% and volumetric productivity to 981 mM (9.1% v/v).


Subject(s)
Butanols/metabolism , Corynebacterium glutamicum/metabolism , Metabolic Engineering/methods , Anaerobiosis , Biotechnology/methods , Butanols/isolation & purification , Butanols/toxicity , Corynebacterium glutamicum/drug effects , Escherichia coli/genetics , Metabolic Networks and Pathways/genetics , Oxygen/metabolism
17.
Appl Microbiol Biotechnol ; 97(18): 8219-26, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23703324

ABSTRACT

Expression plasmids that facilitate production of bio-based products are susceptible to toxic effects that frequently affect plasmid structural stability in recombinant microbial cells. In order to enhance plasmid stability in recombinant Corynebacterium glutamicum, an expression plasmid containing genes of the Clostridium acetobutylicum butyryl-CoA synthesis operon with high structural instability within wild-type C. glutamicum was employed. From a total of 133 mutants exhibiting disruptions in 265 suspect genes, only cgR_0322-deficient mutant was able to maintain the expression plasmid intact. The mutant exhibited normal growth under standard laboratory conditions but its transformation efficiency was about one order of magnitude lower than that of wild-type strain. The cgR_0322 gene encodes an endonuclease that is active against single- as well as double-stranded DNA substrates in the presence of Mg(2+). The cgR_0322-deficient strain should therefore facilitate the development of more robust C. glutamicum strains to be used as microbial production hosts.


Subject(s)
Bacterial Proteins/metabolism , Corynebacterium glutamicum/enzymology , Corynebacterium glutamicum/genetics , Endonucleases/metabolism , Plasmids/chemistry , Plasmids/genetics , Bacterial Proteins/genetics , Corynebacterium glutamicum/chemistry , Corynebacterium glutamicum/metabolism , Endonucleases/genetics , Mutation , Plasmids/metabolism
18.
J Appl Microbiol ; 115(2): 495-508, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23683072

ABSTRACT

AIMS: To characterize the par system of Corynebacterium glutamicum pCGR2 and to manipulate the par components to effectively manipulate plasmid copy number. METHODS AND RESULTS: ParB binds sequence specifically to centromere-binding sites around the parAB operon and serves as an autorepressor. A small ORF (orf4, later named parC) downstream of parAB encodes a protein with 23.7% sequence identity with ParB. ParB is also implicated in the repression of parC transcription. Nonetheless, this ParC protein does not bind to centromere-binding sites and is not essential for plasmid stability. Introduction of a frameshift mutation within ParC implicated the protein in regulation of both parAB and parC. Electrophoretic Mobility Shift Assay confirmed a previously unreported ParC-ParB-parS partition complex. ParC also interacts directly with ParB without the mediation of the centromere sites. Deletion of the par components resulted in different plasmid copy numbers. CONCLUSIONS: A previously unreported ParC-ParB-parS partition complex is formed in pCGR2, where interaction of ParC with ParB-parS may affect the level of repression by ParB. Modifying the par components and antisense RNA enables manipulation of plasmid copy number to varying degrees. SIGNIFICANCE AND IMPACT OF STUDY: Genetically manipulating the par components, in combination with deactivation of antisense RNA, is a novel approach to artificially elevate plasmid copy number. This approach can be applied for development of new genetic engineering tools.


Subject(s)
Bacterial Proteins/metabolism , Corynebacterium glutamicum/genetics , DNA, Bacterial/metabolism , Plasmids/genetics , Repressor Proteins/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Centromere/metabolism , Corynebacterium glutamicum/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Molecular Sequence Data , Operon , Repressor Proteins/chemistry
19.
Appl Microbiol Biotechnol ; 97(15): 6693-703, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23712891

ABSTRACT

We previously demonstrated the simplicity of oxygen-deprived Corynebacterium glutamicum to produce D-lactate, a primary building block of next-generation biodegradable plastics, at very high optical purity by introducing heterologous D-ldhA gene from Lactobacillus delbrueckii. Here, we independently evaluated the effects of overexpressing each of genes encoding the ten glycolytic enzymes on D-lactate production in C. glutamicum. We consequently show that while the reactions catalyzed by glucokinase (GLK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), phosphofructokinase (PFK), triosephosphate isomerase (TPI), and bisphosphate aldolase had positive effects on D-lactate productivity by increasing 98, 39, 15, 13, and 10 %, respectively, in 10 h reactions in minimal salts medium, the reaction catalyzed by pyruvate kinase had large negative effect by decreasing 70 %. The other glycolytic enzymes did not affect D-lactate productivity when each of encoding genes was overexpressed. It is noteworthy that all reactions associated with positive effects are located upstream of glycerate-1,3-bisphosphate in the glycolytic pathway. The D-lactate yield also increased by especially overexpressing TPI encoding gene up to 94.5 %. Interestingly, overexpression of PFK encoding gene reduced the yield of succinate, one of the main by-products of D-lactate production, by 52 %, whereas overexpression of GAPDH encoding gene increased succinate yield by 26 %. Overexpression of GLK encoding gene markedly increased the yield of dihydroxyacetone and glycerol by 10- and 5.8-fold in exchange with decreasing the D-lactate yield. The effect of overexpressing glycolytic genes was also evaluated in 80 h long-term reactions. The variety of effects of overexpressing each of genes encoding the ten glycolytic enzymes on D-lactate production is discussed.


Subject(s)
Corynebacterium glutamicum/metabolism , Glyceraldehyde 3-Phosphate/metabolism , Lactates/metabolism , Oxygen/metabolism , Base Sequence , DNA Primers , Polymerase Chain Reaction
20.
FEBS J ; 280(14): 3298-312, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23621709

ABSTRACT

OxyR, a LysR-type transcriptional regulator, has been established as a redox-responsive activator of antioxidant genes in bacteria. This study shows that OxyR acts as a transcriptional repressor of katA, dps, ftn and cydA in Corynebacterium glutamicum R. katA encodes H2O2-detoxifing enzyme catalase, dps and ftn are implicated in iron homeostasis and cydA encodes a subunit of cytochrome bd oxidase. Quantitative RT-PCR analyses revealed that expression of katA and dps, but not of ftn and cydA, was induced by H2O2. Disruption of the oxyR gene encoding OxyR resulted in a marked increase in katA and dps mRNAs to a level higher than that induced by H2O2, and the oxyR-deficient mutant showed a H2O2-resistant phenotype. This is in contrast to the conventional OxyR-dependent regulatory model. ftn and cydA were also upregulated by oxyR disruption but to a smaller extent. Electrophoretic mobility shift assays revealed that the OxyR protein specifically binds to all four upstream regions of the respective genes under reducing conditions. We observed that the oxidized form of OxyR similarly bound to not only the target promoter regions, but also nonspecific DNA fragments. Based on these findings, we propose that the transcriptional repression by OxyR is alleviated under oxidative stress conditions in a titration mechanism due to the decreased specificity of its DNA-binding activity. DNase I footprinting analyses revealed that the OxyR-binding site in the four target promoters is ~ 50 bp in length and has multiple T-N11-A motifs, a feature of LysR-type transcriptional regulators, but no significant overall sequence conservation.


Subject(s)
Bacterial Proteins/physiology , Corynebacterium glutamicum/genetics , Gene Expression Regulation, Bacterial , Hydrogen Peroxide/pharmacology , Repressor Proteins/physiology , Base Sequence , Binding Sites , Catalase/metabolism , Corynebacterium glutamicum/growth & development , Corynebacterium glutamicum/metabolism , Electrophoretic Mobility Shift Assay , Enzyme Induction , Genes, Bacterial , Molecular Sequence Data , Oxidants/pharmacology , Oxidative Stress , Promoter Regions, Genetic , Protein Binding , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL
...