Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
DNA Res ; 31(1)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38153767

ABSTRACT

The Zinc finger and SCAN domain containing 4 (ZSCAN4) protein, expressed transiently in pluripotent stem cells, gametes, and early embryos, extends telomeres, enhances genome stability, and improves karyotypes in mouse embryonic stem (mES) cells. To gain insights into the mechanism of ZSCAN4 function, we identified genome-wide binding sites of endogenous ZSCAN4 protein using ChIP-seq technology in mouse and human ES cells, where the expression of endogenous ZSCAN4 was induced by treating cells with retinoic acids or by overexpressing DUX4. We revealed that both mouse and human ZSCAN4 bind to the TGCACAC motif located in CA/TG microsatellite repeats, which are known to form unstable left-handed duplexes called Z-DNA that can induce double-strand DNA breaks and mutations. These ZSCAN4 binding sites are mostly located in intergenic and intronic regions of the genomes. By generating ZSCAN4 knockout in human ES cells, we showed that ZSCAN4 does not seem to be involved in transcriptional regulation. We also found that ectopic expression of mouse ZSCAN4 enhances the suppression of chromatin at ZSCAN4-binding sites. These results together suggest that some of the ZSCAN4 functions are mediated by binding to the error-prone regions in mouse and human genomes.


Subject(s)
Genome, Human , Transcription Factors , Humans , Animals , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Zinc Fingers , Microsatellite Repeats , DNA-Binding Proteins/genetics
2.
Cell Death Dis ; 14(8): 501, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542070

ABSTRACT

Gonadal sex determination and differentiation are controlled by somatic support cells of testes (Sertoli cells) and ovaries (granulosa cells). In testes, the epigenetic mechanism that maintains chromatin states responsible for suppressing female sexual differentiation remains unclear. Here, we show that Polycomb repressive complex 1 (PRC1) suppresses a female gene regulatory network in postnatal Sertoli cells. We genetically disrupted PRC1 function in embryonic Sertoli cells after sex determination, and we found that PRC1-depleted postnatal Sertoli cells exhibited defective proliferation and cell death, leading to the degeneration of adult testes. In adult Sertoli cells, PRC1 suppressed specific genes required for granulosa cells, thereby inactivating the female gene regulatory network. Chromatin regions associated with female-specific genes were marked by Polycomb-mediated repressive modifications: PRC1-mediated H2AK119ub and PRC2-mediated H3K27me3. Taken together, this study identifies a critical Polycomb-based mechanism that suppresses ovarian differentiation and maintains Sertoli cell fate in adult testes.


Subject(s)
Histones , Polycomb Repressive Complex 1 , Female , Male , Humans , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Histones/genetics , Histones/metabolism , Testis/metabolism , Gene Regulatory Networks , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Chromatin , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Cell Differentiation/genetics
3.
Genes Cells ; 28(9): 646-652, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37431652

ABSTRACT

The 11th International Fission Yeast Meeting took place at Astel Plaza in Hiroshima, Japan, from May 28th to June 2nd, 2023. This highly anticipated gathering, originally scheduled for May 2021, had been postponed for 2 years due to the COVID-19 pandemic. Researchers from 21 countries, including 211 overseas and 157 domestic participants (overall gender ratio is roughly 60% male vs. 40% female), eagerly awaited the opportunity to meet in person, as virtual interactions had been the only means of communication during this challenging period. The meeting featured four kick-off special lectures, 101 regular talks, and 152 poster presentations. Additionally, a discussion session on upfront frontier research in fission yeast provided an interactive platform for both speakers and attendees. Throughout the event, participants shared cutting-edge knowledge, celebrated significant research findings, and relished the invaluable experience of an in-person meeting. The vibrant and friendly atmosphere, characteristic of this esteemed international conference, fostered collaboration and reinforced the significance of studying this exceptional model organism. Undoubtedly, the outcomes of this meeting will greatly contribute to our understanding of complex biological systems, not only in fission yeast but also in general eukaryotes.


Subject(s)
COVID-19 , Schizosaccharomyces , Humans , Male , Female , Pandemics , Japan
4.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36945549

ABSTRACT

Aging profoundly affects immune-system function, promoting susceptibility to pathogens, cancers and chronic inflammation. We previously identified a population of IL-10-producing, T follicular helper-like cells (" Tfh10 "), linked to suppressed vaccine responses in aged mice. Here, we integrate single-cell ( sc )RNA-seq, scATAC-seq and genome-scale modeling to characterize Tfh10 - and the full CD4 + memory T cell ( CD4 + TM ) compartment - in young and old mice. We identified 13 CD4 + TM populations, which we validated through cross-comparison to prior scRNA-seq studies. We built gene regulatory networks ( GRNs ) that predict transcription-factor control of gene expression in each T-cell population and how these circuits change with age. Through integration with pan-cell aging atlases, we identified intercellular-signaling networks driving age-dependent changes in CD4 + TM. Our atlas of finely resolved CD4 + TM subsets, GRNs and cell-cell communication networks is a comprehensive resource of predicted regulatory mechanisms operative in memory T cells, presenting new opportunities to improve immune responses in the elderly.

5.
JCI Insight ; 7(8)2022 04 22.
Article in English | MEDLINE | ID: mdl-35451374

ABSTRACT

Cell-free extrachromosomal circular DNA (eccDNA) as a distinct topological form from linear DNA has recently gained increasing research interest, with possible clinical applications as a class of biomarkers. In this study, we aimed to explore the relationship between nucleases and eccDNA characteristics in plasma. By using knockout mouse models with deficiencies in deoxyribonuclease 1 (DNASE1) or deoxyribonuclease 1 like 3 (DNASE1L3), we found that cell-free eccDNA in Dnase1l3-/- mice exhibited larger size distributions than that in wild-type mice. Such size alterations were not found in tissue eccDNA of either Dnase1-/- or Dnase1l3-/- mice, suggesting that DNASE1L3 could digest eccDNA extracellularly but did not seem to affect intracellular eccDNA. Using a mouse pregnancy model, we observed that in Dnase1l3-/- mice pregnant with Dnase1l3+/- fetuses, the eccDNA in the maternal plasma was shorter compared with that of Dnase1l3-/- mice carrying Dnase1l3-/- fetuses, highlighting the systemic effects of circulating fetal DNASE1L3 degrading the maternal eccDNA extracellularly. Furthermore, plasma eccDNA in patients with DNASE1L3 mutations also exhibited longer size distributions than that in healthy controls. Taken together, this study provided a hitherto missing link between nuclease activity and the biological manifestations of eccDNA in plasma, paving the way for future biomarker development of this special form of DNA molecules.


Subject(s)
DNA , Fetus , Animals , DNA, Circular/genetics , Deoxyribonucleases/genetics , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Female , Fetus/metabolism , Humans , Mice , Mice, Knockout , Pregnancy
6.
Biosci Biotechnol Biochem ; 86(2): 254-259, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34864879

ABSTRACT

Kinesin-5 family proteins are essential for bipolar spindle assembly to ensure mitotic fidelity. Here, we demonstrate evolutionary functional conservation of kinesin-5 between human and fission yeast. Human Eg5 expressed in the nucleus replaces fission yeast counterpart Cut7. Intriguingly, Eg5 overproduction results in cytotoxicity. This phenotype provides a useful platform for the development of novel kinesin-5 inhibitors as anticancer drugs.


Subject(s)
Schizosaccharomyces
7.
Int J Mol Sci ; 22(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946513

ABSTRACT

Cells form a bipolar spindle during mitosis to ensure accurate chromosome segregation. Proper spindle architecture is established by a set of kinesin motors and microtubule-associated proteins. In most eukaryotes, kinesin-5 motors are essential for this process, and genetic or chemical inhibition of their activity leads to the emergence of monopolar spindles and cell death. However, these deficiencies can be rescued by simultaneous inactivation of kinesin-14 motors, as they counteract kinesin-5. We conducted detailed genetic analyses in fission yeast to understand the mechanisms driving spindle assembly in the absence of kinesin-5. Here, we show that deletion of the dri1 gene, which encodes a putative RNA-binding protein, can rescue temperature sensitivity caused by cut7-22, a fission yeast kinesin-5 mutant. Interestingly, kinesin-14/Klp2 levels on the spindles in the cut7 mutants were significantly reduced by the dri1 deletion, although the total levels of Klp2 and the stability of spindle microtubules remained unaffected. Moreover, RNA-binding motifs of Dri1 are essential for its cytoplasmic localization and function. We have also found that a portion of Dri1 is spatially and functionally sequestered by chaperone-based protein aggregates upon mild heat stress and limits cell division at high temperatures. We propose that Dri1 might be involved in post-transcriptional regulation through its RNA-binding ability to promote the loading of Klp2 on the spindle microtubules.


Subject(s)
Microtubule-Associated Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Spindle Apparatus/metabolism , Gene Deletion , Hot Temperature , Kinesins/genetics , Kinesins/metabolism , Microtubule-Associated Proteins/genetics , Mutation , Protein Aggregates , Schizosaccharomyces/cytology , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Spindle Apparatus/genetics
8.
Pathol Int ; 71(7): 441-452, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33819373

ABSTRACT

Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. Kinesin Family Member C1 (KIFC1) has been proposed as a promising therapeutic target due to its pivotal role in centrosome clustering to mediate cancer cell progression. This study aimed to analyze the expression and biological function of KIFC1 in CRC. Immunohistochemically, 67 (52%) of 129 CRC cases were positive for KIFC1 and statistically associated with poorer overall survival. KIFC1 small interfering RNA (siRNA)-transfected cells demonstrated lower cell proliferation as compared to the negative control cells. A specific KIFC1 inhibitor, kolavenic acid analog (KAA) drastically inhibited CRC cell proliferation. Microarray analysis revealed that KAA-treated CRC cells presented reduced ZW10 interacting kinetochore protein (ZWINT) expression as compared to control cells. Immunohistochemical analysis demonstrated that 61 (47%) of 129 CRC cases were positive for ZWINT and ZWINT expression was significantly correlated with KIFC1 expression. ZWINT-positive cases exhibited significantly worse overall survival. KIFC1 siRNA-transfected cells showed reduced ZWINT expression while ZWINT siRNA-transfected cells decreased cell proliferation. Both KIFC1 and ZWINT knockdown cells attenuated spheroid formation ability. This study provides new insights into KIFC1 regulating ZWINT in CRC progression and its potential as a therapeutic target.


Subject(s)
Colorectal Neoplasms , Intracellular Signaling Peptides and Proteins/metabolism , Kinesins , Nuclear Proteins/metabolism , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Diterpenes/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Kinesins/genetics , Kinesins/metabolism , RNA, Small Interfering , Transfection
9.
iScience ; 24(1): 102031, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33506191

ABSTRACT

Eukaryotic cells position the nucleus within the proper intracellular space, thereby safeguarding a variety of cellular processes. In fission yeast, the interphase nucleus is placed in the cell middle in a microtubule-dependent manner. By contrast, how the mitotic nucleus is positioned remains elusive. Here we show that several cell-cycle mutants that arrest in mitosis all displace the nucleus toward one end of the cell. Intriguingly, the actin cytoskeleton is responsible for nuclear movement. Time-lapse live imaging indicates that mitosis-specific F-actin cables possibly push the nucleus through direct interaction with the nuclear envelope, and subsequently actomyosin ring constriction further shifts the nucleus away from the center. This nuclear movement is beneficial, because if the nuclei were retained in the center, unseparated chromosomes would be intersected by the contractile actin ring and the septum, imposing the lethal cut phenotype. Thus, fission yeast escapes from mitotic catastrophe by means of actin-dependent nuclear movement.

10.
Nat Struct Mol Biol ; 27(10): 978-988, 2020 10.
Article in English | MEDLINE | ID: mdl-32895557

ABSTRACT

Owing to bursts in the expression of thousands of germline-specific genes, the testis has the most diverse and complex transcriptome of all organs. By analyzing the male germline of mice, we demonstrate that the genome-wide reorganization of super-enhancers (SEs) drives bursts in germline gene expression after the mitosis-to-meiosis transition. SE reorganization is regulated by two molecular events: the establishment of meiosis-specific SEs via A-MYB (MYBL1), a key transcription factor for germline genes, and the resolution of SEs in mitotically proliferating cells via SCML2, a germline-specific Polycomb protein required for spermatogenesis-specific gene expression. Before entry into meiosis, meiotic SEs are preprogrammed in mitotic spermatogonia to ensure the unidirectional differentiation of spermatogenesis. We identify key regulatory factors for both mitotic and meiotic enhancers, revealing a molecular logic for the concurrent activation of mitotic enhancers and suppression of meiotic enhancers in the somatic and/or mitotic proliferation phases.


Subject(s)
Enhancer Elements, Genetic , Meiosis/genetics , Mitosis/genetics , Polycomb-Group Proteins/genetics , Proto-Oncogene Proteins c-myb/genetics , Spermatogenesis/genetics , Trans-Activators/genetics , Animals , Cell Differentiation , Gene Expression Regulation , Male , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Polycomb-Group Proteins/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Spermatogonia/cytology , Spermatogonia/physiology , Trans-Activators/metabolism , X Chromosome/genetics
11.
Nat Struct Mol Biol ; 27(10): 967-977, 2020 10.
Article in English | MEDLINE | ID: mdl-32895553

ABSTRACT

Gene regulation in the germline ensures the production of high-quality gametes, long-term maintenance of the species and speciation. Male germline transcriptomes undergo dynamic changes after the mitosis-to-meiosis transition and have been subject to evolutionary divergence among mammals. However, the mechanisms underlying germline regulatory divergence remain undetermined. Here, we show that endogenous retroviruses (ERVs) influence species-specific germline transcriptomes. After the mitosis-to-meiosis transition in male mice, specific ERVs function as active enhancers to drive germline genes, including a mouse-specific gene set, and bear binding motifs for critical regulators of spermatogenesis, such as A-MYB. This raises the possibility that a genome-wide transposition of ERVs rewired germline gene expression in a species-specific manner. Of note, independently evolved ERVs are associated with the expression of human-specific germline genes, demonstrating the prevalence of ERV-driven mechanisms in mammals. Together, we propose that ERVs fine-tune species-specific transcriptomes in the mammalian germline.


Subject(s)
Endogenous Retroviruses/genetics , Spermatogenesis/genetics , Spermatozoa/physiology , Animals , Chromatin/genetics , Chromatin/virology , Enhancer Elements, Genetic , Gene Expression Regulation, Viral , Humans , Long Interspersed Nucleotide Elements , Male , Mammals/genetics , Mammals/virology , Meiosis , Mice, Inbred C57BL , Mice, Transgenic , Mitosis , Mutation , Proto-Oncogene Proteins c-myb/genetics , Repetitive Sequences, Nucleic Acid , Rodentia/genetics , Rodentia/virology , Spermatozoa/virology , Trans-Activators/genetics , Transcriptome
12.
Cells ; 9(5)2020 05 07.
Article in English | MEDLINE | ID: mdl-32392819

ABSTRACT

The bipolar mitotic spindle drives accurate chromosome segregation by capturing the kinetochore and pulling each set of sister chromatids to the opposite poles. In this review, we describe recent findings on the multiple pathways leading to bipolar spindle formation in fission yeast and discuss these results from a broader perspective. The roles of three mitotic kinesins (Kinesin-5, Kinesin-6 and Kinesin-14) in spindle assembly are depicted, and how a group of microtubule-associated proteins, sister chromatid cohesion and the kinetochore collaborate with these motors is shown. We have paid special attention to the molecular pathways that render otherwise essential Kinesin-5 to become non-essential: how cells build bipolar mitotic spindles without the need for Kinesin-5 and where the alternate forces come from are considered. We highlight the force balance for bipolar spindle assembly and explain how outward and inward forces are generated by various ways, in which the proper fine-tuning of microtubule dynamics plays a crucial role. Overall, these new pathways have illuminated the remarkable plasticity and adaptability of spindle mechanics. Kinesin molecules are regarded as prospective targets for cancer chemotherapy and many specific inhibitors have been developed. However, several hurdles have arisen against their clinical implementation. This review provides insight into possible strategies to overcome these challenges.


Subject(s)
Kinesins/metabolism , Microtubules/metabolism , Schizosaccharomyces/metabolism , Biomechanical Phenomena , Humans , Kinesins/genetics , Mutation/genetics , Neoplasms/pathology , Neoplasms/therapy , Schizosaccharomyces/cytology
13.
J Exp Med ; 217(1)2020 01 06.
Article in English | MEDLINE | ID: mdl-31653690

ABSTRACT

Activation of T cells is dependent on the organized and timely opening and closing of chromatin. Herein, we identify AP-1 as the transcription factor that directs most of this remodeling. Chromatin accessibility profiling showed quick opening of closed chromatin in naive T cells within 5 h of activation. These newly opened regions were strongly enriched for the AP-1 motif, and indeed, ChIP-seq demonstrated AP-1 binding at >70% of them. Broad inhibition of AP-1 activity prevented chromatin opening at AP-1 sites and reduced the expression of nearby genes. Similarly, induction of anergy in the absence of co-stimulation during activation was associated with reduced induction of AP-1 and a failure of proper chromatin remodeling. The translational relevance of these findings was highlighted by the substantial overlap of AP-1-dependent elements with risk loci for multiple immune diseases, including multiple sclerosis, inflammatory bowel disease, and allergic disease. Our findings define AP-1 as the key link between T cell activation and chromatin remodeling.


Subject(s)
Chromatin/metabolism , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , Transcription Factor AP-1/immunology , Binding Sites/immunology , Cells, Cultured , Chromatin Assembly and Disassembly/immunology , Gene Expression Regulation/immunology , Humans , Hypersensitivity/immunology , Inflammatory Bowel Diseases/immunology , Multiple Sclerosis/immunology
14.
Bioorg Med Chem ; 28(1): 115154, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31753800

ABSTRACT

Although cancer cells often harbor supernumerary centrosomes, they form pseudo-bipolar spindles via centrosome clustering, instead of lethal multipolar spindles, and thus avoid cell death. Kinesin-14 HSET/KIFC1 is a crucial protein involved in centrosome clustering. Accordingly, a compound that targets HSET could potentially inhibit cancer cell proliferation in a targeted manner. Here, we report three natural compounds derived from Solidago altissima that restored the growth of fission yeast cells exhibiting lethal HSET overproduction (positive screening), namely solidagonic acid (SA) (1), kolavenic acid analog (KAA: a stereo isomer at C-9 and C-10 of 6ß-tigloyloxykolavenic acid) (2), and kolavenic acid (KA) (3). All three compounds suppressed fission yeast cell death and enabled reversion of the mitotic spindles from a monopolar to bipolar morphology. Compound 2, which exerted the strongest activity against HSET-overproducing yeast cells, also inhibited centrosome clustering in MDA-MB-231 human breast adenocarcinoma cells, which contained large numbers of supernumerary centrosomes. These natural compounds may be useful as bioprobes in studies of HSET function. Moreover, compound 2 is a prime contender in the development of novel agents for cancer treatment.


Subject(s)
Diterpenes/pharmacology , Kinesins/antagonists & inhibitors , Mitosis/drug effects , Schizosaccharomyces/drug effects , Cell Line, Tumor , Centrosome/drug effects , Diterpenes/chemical synthesis , Diterpenes/chemistry , Dose-Response Relationship, Drug , Humans , Kinesins/biosynthesis , Molecular Structure , Schizosaccharomyces/growth & development , Spindle Apparatus/drug effects , Structure-Activity Relationship
15.
Int J Mol Sci ; 20(20)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618856

ABSTRACT

Proper bipolar spindle assembly underlies accurate chromosome segregation. A cohort of microtubule-associated proteins orchestrates spindle microtubule formation in a spatiotemporally coordinated manner. Among them, the conserved XMAP215/TOG family of microtubule polymerase plays a central role in spindle assembly. In fission yeast, two XMAP215/TOG members, Alp14 and Dis1, share essential roles in cell viability; however how these two proteins functionally collaborate remains undetermined. Here we show the functional interplay and specification of Alp14 and Dis1. Creation of new mutant alleles of alp14, which display temperature sensitivity in the absence of Dis1, enabled us to conduct detailed analyses of a double mutant. We have found that simultaneous inactivation of Alp14 and Dis1 results in early mitotic arrest with very short, fragile spindles. Intriguingly, these cells often undergo spindle collapse, leading to a lethal "cut" phenotype. By implementing an artificial targeting system, we have shown that Alp14 and Dis1 are not functionally exchangeable and as such are not merely redundant paralogues. Interestingly, while Alp14 promotes microtubule nucleation, Dis1 does not. Our results uncover that the intrinsic specification, not the spatial regulation, between Alp14 and Dis1 underlies the collaborative actions of these two XMAP215/TOG members in mitotic progression, spindle integrity and genome stability.


Subject(s)
Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/physiology , Kinetochores/metabolism , Mitosis , Models, Molecular , Phenotype , Spindle Apparatus/metabolism
16.
Sci Rep ; 9(1): 7336, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089172

ABSTRACT

Bipolar mitotic spindles play a critical part in accurate chromosome segregation. During late mitosis, spindle microtubules undergo drastic elongation in a process called anaphase B. Two kinesin motors, Kinesin-5 and Kinesin-6, are thought to generate outward forces to drive spindle elongation, and the microtubule crosslinker Ase1/PRC1 maintains structural integrity of antiparallel microtubules. However, how these three proteins orchestrate this process remains unknown. Here we explore the functional interplay among fission yeast Kinesin-5/Cut7, Kinesin-6/Klp9 and Ase1. Using total internal reflection fluorescence microscopy, we show that Klp9 forms homotetramers and that Klp9 is a processive plus end-directed motor. klp9Δase1Δ is synthetically lethal. Surprisingly, this lethality is not ascribable to the defective motor activity of Klp9; instead, it is dependent upon a nuclear localisation signal and coiled coil domains within the non-motor region. We isolated a cut7 mutant (cut7-122) that displays temperature sensitivity only in the absence of Klp9. Interestingly, cut7-122 alone is impaired in spindle elongation during anaphase B, and furthermore, cut7-122klp9Δ double mutants exhibit additive defects. We propose that Klp9 plays dual roles during anaphase B; one is motor-dependent that collaborates with Cut7 in force generation, while the other is motor-independent that ensures structural integrity of spindle microtubules together with Ase1.


Subject(s)
Kinesins/metabolism , Microtubule-Associated Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Anaphase , Gene Deletion , Gene Expression Regulation, Fungal , Kinesins/genetics , Microtubule-Associated Proteins/genetics , Mutation , Protein Interaction Maps , Protein Multimerization , Schizosaccharomyces/cytology , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Spindle Apparatus/genetics , Spindle Apparatus/metabolism
17.
Biosci Biotechnol Biochem ; 83(9): 1717-1720, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31042107

ABSTRACT

Temperature-sensitive (ts) mutants provide powerful tools for investigation of cellular functions of essential genes. We report here asimple procedure to generate ts mutations using error-prone PCR within pcp1 that encodes aspindle pole body (SPB) component in Schizosaccharomyces pombe. This manipulation is not restricted to pcp1, and can be suited to any essential genes involved in other processes.


Subject(s)
Genes, Fungal , Mutation , Polymerase Chain Reaction/methods , Schizosaccharomyces/genetics , Spindle Pole Bodies/metabolism , Temperature , Cell Cycle Proteins , Nuclear Proteins/genetics , Schizosaccharomyces pombe Proteins/genetics
18.
G3 (Bethesda) ; 9(1): 269-280, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30463883

ABSTRACT

The Kinesin-5 motor Cut7 in Schizosaccharomyces pombe plays essential roles in spindle pole separation, leading to the assembly of bipolar spindle. In many organisms, simultaneous inactivation of Kinesin-14s neutralizes Kinesin-5 deficiency. To uncover the molecular network that counteracts Kinesin-5, we have conducted a genetic screening for suppressors that rescue the cut7-22 temperature sensitive mutation, and identified 10 loci. Next generation sequencing analysis reveals that causative mutations are mapped in genes encoding α-, ß-tubulins and the microtubule plus-end tracking protein Mal3/EB1, in addition to the components of the Pkl1/Kinesin-14 complex. Moreover, the deletion of various genes required for microtubule nucleation/polymerization also suppresses the cut7 mutant. Intriguingly, Klp2/Kinesin-14 levels on the spindles are significantly increased in cut7 mutants, whereas these increases are negated by suppressors, which may explain the suppression by these mutations/deletions. Consistent with this notion, mild overproduction of Klp2 in these double mutant cells confers temperature sensitivity. Surprisingly, treatment with a microtubule-destabilizing drug not only suppresses cut7 temperature sensitivity but also rescues the lethality resulting from the deletion of cut7, though a single klp2 deletion per se cannot compensate for the loss of Cut7. We propose that microtubule assembly and/or dynamics antagonize Cut7 functions, and that the orchestration between these two factors is crucial for bipolar spindle assembly.


Subject(s)
Kinesins/genetics , Microtubule-Associated Proteins/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Spindle Apparatus/genetics , Chromosome Segregation/genetics , M Phase Cell Cycle Checkpoints/genetics , Microtubules/genetics , Mitosis/genetics , Mutation , Schizosaccharomyces/growth & development , Tubulin/genetics
19.
Proc Natl Acad Sci U S A ; 115(19): 4957-4962, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29686098

ABSTRACT

Repressive H3K27me3 and active H3K4me2/3 together form bivalent chromatin domains, molecular hallmarks of developmental potential. In the male germline, these domains are thought to persist into sperm to establish totipotency in the next generation. However, it remains unknown how H3K27me3 is established on specific targets in the male germline. Here, we demonstrate that a germline-specific Polycomb protein, SCML2, binds to H3K4me2/3-rich hypomethylated promoters in undifferentiated spermatogonia to facilitate H3K27me3. Thus, SCML2 establishes bivalent domains in the male germline of mice. SCML2 regulates two major classes of bivalent domains: Class I domains are established on developmental regulator genes that are silent throughout spermatogenesis, while class II domains are established on somatic genes silenced during late spermatogenesis. We propose that SCML2-dependent H3K27me3 in the male germline prepares the expression of developmental regulator and somatic genes in embryonic development.


Subject(s)
Histones/metabolism , Polycomb-Group Proteins/metabolism , Promoter Regions, Genetic , Spermatogenesis/physiology , Spermatogonia/metabolism , Animals , Embryonic Development , Gene Expression Regulation, Developmental , Histones/genetics , Male , Mice , Mice, Knockout , Polycomb-Group Proteins/genetics , Spermatogonia/cytology
20.
Nat Genet ; 50(5): 699-707, 2018 05.
Article in English | MEDLINE | ID: mdl-29662164

ABSTRACT

Explaining the genetics of many diseases is challenging because most associations localize to incompletely characterized regulatory regions. Using new computational methods, we show that transcription factors (TFs) occupy multiple loci associated with individual complex genetic disorders. Application to 213 phenotypes and 1,544 TF binding datasets identified 2,264 relationships between hundreds of TFs and 94 phenotypes, including androgen receptor in prostate cancer and GATA3 in breast cancer. Strikingly, nearly half of systemic lupus erythematosus risk loci are occupied by the Epstein-Barr virus EBNA2 protein and many coclustering human TFs, showing gene-environment interaction. Similar EBNA2-anchored associations exist in multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, juvenile idiopathic arthritis and celiac disease. Instances of allele-dependent DNA binding and downstream effects on gene expression at plausibly causal variants support genetic mechanisms dependent on EBNA2. Our results nominate mechanisms that operate across risk loci within disease phenotypes, suggesting new models for disease origins.


Subject(s)
Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/immunology , Transcription Factors/genetics , Viral Proteins/genetics , Viral Proteins/immunology , Autoimmunity/genetics , Cell Line , Cell Line, Tumor , DNA-Binding Proteins/genetics , Herpesvirus 4, Human/genetics , Humans , Lupus Erythematosus, Systemic/genetics , Maximum Tolerated Dose , Neoplasms/genetics , Phenotype , Protein Binding , Regulatory Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...