Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Data Brief ; 51: 109820, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38075611

ABSTRACT

The possible application of a simple analytical method based on a UV (ultraviolet) spectral dataset coupled with SIMCA (soft independent modeling of class analogy) for authentication of Indonesian specialty ground roasted coffee with different botanical and geographical indications (GIs) was demonstrated. Three types of Indonesian specialty ground roasted coffee were used: GIs arabica coffee from Gayo Aceh (96 samples), GIs liberica coffee from Meranti-Riau (119 samples), and GIs robusta coffee from Lampung (150 samples) with 1 g weight of each sample. All samples were extracted using hot distilled water and 3 mL aqueous filtered samples were pipetted into a 10 mm quartz cell. Original UV spectral datasets were recorded in the range of 190-399 nm. The pre-processed spectral dataset was generated using three simultaneous different preprocessing techniques: moving average smoothing with 11 segments, standard normal variate (SNV), and Savitzky-Golay (SG) first derivative with window size and polynomial order value of 11 and 2. The supervised classification based on the SIMCA method was applied for preprocessed selected spectral data (250-399 nm). The PCA data showed that GIs coffee with different botanical and geographical indications can be well separated. The SIMCA classification was accepted with 100 % of correct classification (100 % CC). This dataset demonstrated the potential use of UV spectroscopy with chemometrics to perform simple and affordable authentication of Indonesian specialty ground roasted coffee with different botanical and geographical indications (GIs).

2.
Foods ; 12(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37628066

ABSTRACT

Stingless bee honey (SBH) is rich in phenolic compounds and available in limited quantities. Authentication of SBH is important to protect SBH from adulteration and retain the reputation and sustainability of SBH production. In this research, we use portable LED-based fluorescence spectroscopy to generate and measure the fluorescence intensity of pure SBH and adulterated samples. The spectrometer is equipped with four UV-LED lamps (peaking at 365 nm) as an excitation source. Heterotrigona itama, a popular SBH, was used as a sample. 100 samples of pure SBH and 240 samples of adulterated SBH (levels of adulteration ranging from 10 to 60%) were prepared. Fluorescence spectral acquisition was measured for both the pure and adulterated SBH samples. Principal component analysis (PCA) demonstrated that a clear separation between the pure and adulterated SBH samples could be established from the first two principal components (PCs). A supervised classification based on soft independent modeling of class analogy (SIMCA) achieved an excellent classification result with 100% accuracy, sensitivity, specificity, and precision. Principal component regression (PCR) was superior to partial least squares regression (PLSR) and multiple linear regression (MLR) methods, with a coefficient of determination in prediction (R2p) = 0.9627, root mean squared error of prediction (RMSEP) = 4.1579%, ratio prediction to deviation (RPD) = 5.36, and range error ratio (RER) = 14.81. The LOD and LOQ obtained were higher compared to several previous studies. However, most predicted samples were very close to the regression line, which indicates that the developed PLSR, PCR, and MLR models could be used to detect HFCS adulteration of pure SBH samples. These results showed the proposed portable LED-based fluorescence spectroscopy has a high potential to detect and quantify food adulteration in SBH, with the additional advantages of being an accurate, affordable, and fast measurement with minimum sample preparation.

3.
Foods ; 12(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38231760

ABSTRACT

Aceh is an important region for the production of high-quality Gayo arabica coffee in Indonesia. In this area, several coffee cherry processing methods are well implemented including the honey process (HP), wine process (WP), and natural process (NP). The most significant difference between the three coffee cherry processing methods is the fermentation process: HP is a process of pulped coffee bean fermentation, WP is coffee cherry fermentation, and NP is no fermentation. It is well known that the WP green coffee beans are better in quality and are sold at higher prices compared with the HP and NP green coffee beans. In this present study, we evaluated the utilization of fluorescence information to discriminate Gayo arabica green coffee beans from different cherry processing methods using portable fluorescence spectroscopy and chemometrics analysis. A total of 300 samples were used (n = 100 for HP, WP, and NP, respectively). Each sample consisted of three selected non-defective green coffee beans. Fluorescence spectral data from 348.5 nm to 866.5 nm were obtained by exciting the intact green coffee beans using a portable spectrometer equipped with four 365 nm LED lamps. The result showed that the fermented green coffee beans (HP and WP) were closely mapped and mostly clustered on the left side of PC1, with negative scores. The non-fermented (NP) green coffee beans were clustered mostly on the right of PC1 with positive scores. The results of the classification using partial least squares-discriminant analysis (PLS-DA), linear discriminant analysis (LDA), and principal component analysis-linear discriminant analysis (PCA-LDA) are acceptable, with an accuracy of more than 80% reported. The highest accuracy of prediction of 96.67% was obtained by using the PCA-LDA model. Our recent results show the potential application of portable fluorescence spectroscopy using LED lamps to classify and authenticate the Gayo arabica green coffee beans according to their different cherry processing methods. This innovative method is more affordable and could be easy to implement (in terms of both affordability and practicability) in the coffee industry in Indonesia.

4.
Molecules ; 26(20)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34684672

ABSTRACT

In this present research, a spectroscopic method based on UV-Vis spectroscopy is utilized to quantify the level of corn adulteration in peaberry ground roasted coffee by chemometrics. Peaberry coffee with two types of bean processing of wet and dry-processed methods was used and intentionally adulterated by corn with a 10-50% level of adulteration. UV-Vis spectral data are obtained for aqueous samples in the range between 250 and 400 nm with a 1 nm interval. Three multivariate regression methods, including partial least squares regression (PLSR), multiple linear regression (MLR), and principal component regression (PCR), are used to predict the level of corn adulteration. The result shows that all individual regression models using individual wet and dry samples are better than that of global regression models using combined wet and dry samples. The best calibration model for individual wet and dry and combined samples is obtained for the PLSR model with a coefficient of determination in the range of 0.83-0.93 and RMSE below 6% (w/w) for calibration and validation. However, the error prediction in terms of RMSEP and bias were highly increased when the individual regression model was used to predict the level of corn adulteration with differences in the bean processing method. The obtained results demonstrate that the use of the global PLSR model is better in predicting the level of corn adulteration. The error prediction for this global model is acceptable with low RMSEP and bias for both individual and combined prediction samples. The obtained RPDp and RERp in prediction for the global PLSR model are more than two and five for individual and combined samples, respectively. The proposed method using UV-Vis spectroscopy with a global PLSR model can be applied to quantify the level of corn adulteration in peaberry ground roasted coffee with different bean processing methods.


Subject(s)
Coffee/chemistry , Food Contamination/analysis , Food Handling/methods , Models, Statistical , Spectrum Analysis/methods
5.
Molecules ; 26(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572263

ABSTRACT

As a functional food, honey is a food product that is exposed to the risk of food fraud. To mitigate this, the establishment of an authentication system for honey is very important in order to protect both producers and consumers from possible economic losses. This research presents a simple analytical method for the authentication and classification of Indonesian honeys according to their botanical, entomological, and geographical origins using ultraviolet (UV) spectroscopy and SIMCA (soft independent modeling of class analogy). The spectral data of a total of 1040 samples, representing six types of Indonesian honey of different botanical, entomological, and geographical origins, were acquired using a benchtop UV-visible spectrometer (190-400 nm). Three different pre-processing algorithms were simultaneously evaluated; namely an 11-point moving average smoothing, mean normalization, and Savitzky-Golay first derivative with 11 points and second-order polynomial fitting (ordo 2), in order to improve the original spectral data. Chemometrics methods, including exploratory analysis of PCA and SIMCA classification method, was used to classify the honey samples. A clear separation of the six different Indonesian honeys, based on botanical, entomological, and geographical origins, was obtained using PCA calculated from pre-processed spectra from 250-400 nm. The SIMCA classification method provided satisfactory results in classifying honey samples according to their botanical, entomological, and geographical origins and achieved 100% accuracy, sensitivity, and specificity. Several wavelengths were identified (266, 270, 280, 290, 300, 335, and 360 nm) as the most sensitive for discriminating between the different Indonesian honey samples.


Subject(s)
Bees/physiology , Flowers/metabolism , Food Contamination/analysis , Honey/analysis , Honey/classification , Animals , Discriminant Analysis , Flowers/chemistry , Geography , Indonesia , Principal Component Analysis , Spectrophotometry, Ultraviolet
6.
Int J Food Sci ; 2017: 6274178, 2017.
Article in English | MEDLINE | ID: mdl-28913348

ABSTRACT

Asian palm civet coffee or kopi luwak (Indonesian words for coffee and palm civet) is well known as the world's priciest and rarest coffee. To protect the authenticity of luwak coffee and protect consumer from luwak coffee adulteration, it is very important to develop a robust and simple method for determining the adulteration of luwak coffee. In this research, the use of UV-Visible spectra combined with PLSR was evaluated to establish rapid and simple methods for quantification of adulteration in luwak-arabica coffee blend. Several preprocessing methods were tested and the results show that most of the preprocessing spectra were effective in improving the quality of calibration models with the best PLS calibration model selected for Savitzky-Golay smoothing spectra which had the lowest RMSECV (0.039) and highest RPDcal value (4.64). Using this PLS model, a prediction for quantification of luwak content was calculated and resulted in satisfactory prediction performance with high both RPD p and RER values.

SELECTION OF CITATIONS
SEARCH DETAIL