Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Biotechnol ; 32(13): 1955, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37781057

ABSTRACT

[This corrects the article DOI: 10.1007/s10068-022-01174-0.].

2.
Microorganisms ; 11(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37375061

ABSTRACT

Chicory leaves (Cichorium intybus) are widely consumed due to their health benefits. They are mainly consumed raw or without adequate washing, which has led to an increase in food-borne illness. This study investigated the taxonomic composition and diversity of chicory leaves collected at different sampling times and sites. The potential pathogenic genera (Sphingomonas, Pseudomonas, Pantoea, Staphylococcus, Escherichia, and Bacillus) were identified on the chicory leaves. We also evaluated the effects of various storage conditions (enterohemorrhagic E. coli contamination, washing treatment, and temperature) on the chicory leaves' microbiota. These results provide an understanding of the microbiota in chicory and could be used to prevent food-borne illnesses.

3.
Food Sci Biotechnol ; 32(1): 83-90, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36606087

ABSTRACT

Staphylococcus aureus is a gram-positive foodborne pathogen capable of forming strong biofilms. This study identified that anti-biofilm natural compound against S. aureus. Sinomenine, a natural compound, showed significantly reduced biofilm formation (31.97-39.86%), but no effect on bacterial growth was observed. The dispersion of preformed biofilms was observed by confocal laser scanning microscopy (CLSM). qRT-PCR revealed that sinomenine treatment significantly up-regulated agrA by 3.8-fold and down-regulated icaA gene by 3.1-fold. These indicate that sinomenine treatment induces biofilm dispersal due to cell-cell adhesion, polysaccharide intercellular adhesin (PIA), and phenol-soluble modulin (PSM) peptides production. Our results suggest that sinomenine can be used as a promising agent for effectively controlling biofilm formation and dispersion, thereby making S. aureus more susceptible to the action of antimicrobial agents.

4.
J Microbiol Biotechnol ; 32(2): 195-204, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-34949749

ABSTRACT

Chinese chive (Allium tuberosum Rottler) has potential risks associated with pathogenic bacterial contamination as it is usually consumed raw. In this study, we investigated the microbiota of Chinese chives purchased from traditional markets and grocery stores in March (Spring) and June (Summer) 2017. Differences in bacterial diversity were observed, and the microbial composition varied across sampling times and sites. In June, potential pathogenic genera, such as Escherichia, Enterobacter, and Pantoea, accounted for a high proportion of the microbiota in samples purchased from the traditional market. A large number of pathogenic bacteria (Acinetobacter lwoffii, Bacillus cereus, Klebsiella pneumoniae, and Serratia marcescens) were detected in the June samples at a relatively high rate. In addition, the influence of the washing treatment on Chinese chive microbiota was analyzed. After storage at 26°C, the washing treatment accelerated the growth of enterohemorrhagic Escherichia coli (EHEC) because it caused dynamic shifts in Chinese chive indigenous microbiota. These results expand our knowledge of the microbiota in Chinese chives and provide data for the prediction and prevention of food-borne illnesses.


Subject(s)
Chive , Microbiota , Pantoea , Chive/microbiology
5.
Food Res Int ; 126: 108664, 2019 12.
Article in English | MEDLINE | ID: mdl-31732071

ABSTRACT

Perilla (Perilla frutescens) is a commonly consumed herb with various health benefits in Asia. However, the risks of food-borne illness owing to the presence of pathogens on perilla leaves have not been evaluated. In this study, we evaluated the microbiota of perilla leaves harvested in South Korea using Illumina MiSeq sequencing of the 16S rRNA gene. In total, 2,743,003 sequencing reads were obtained, and 92-437 operational taxonomic units were observed in all samples. Bacterial loads were quantified, and the diversity indices were compared. Differences in the microbiota among sampling times and regions were also investigated. Proteobacteria and Firmicutes were predominant phyla at both times. At the class level, the bacterial communities were composed primarily of Alphaproteobacteria, Bacilli, and Gammaproteobacteria. Diverse bacterial taxa, such as Bacillus, uncultured family Enterobacteriaceae, and Sphingomonas were detected, and the representative pathogenic species (i.e., Acinetobacter lwoffii, Klebsiella pneumoniae, and Staphylococcus aureus) were quantified by qRT-PCR. The results of the co-occurrence network analysis showed characteristics of bacterial taxa in the microbiome on perilla leaves and provided insights into the roles of correlations among diverse microbes, including potential pathogens. Based on these results, the potential risk of food-borne illness from consumption of perilla leaves may be higher in July than in April. In summary, the microbial compositions determined in this study can be used as a base data for food-safety management for prediction and prevention of future outbreaks.


Subject(s)
Microbiota/genetics , Perilla frutescens/microbiology , Plant Leaves/microbiology , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Humans , Metagenome/genetics , Metagenomics , Republic of Korea
6.
J Microbiol Biotechnol ; 28(8): 1318-1331, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30301312

ABSTRACT

Lettuce (Lactuca sativa L.) is a major ingredient used in many food recipes in South Korea. Lettuce samples were collected during their maximum production period between April and July in order to investigate the microbiota of lettuce during different seasons. 16S rRNA gene-based sequencing was conducted using Illumina MiSeq, and real-time PCR was performed for quantification. The number of total bacterial was greater in lettuce collected in July than in that collected in April, albeit with reduced diversity. The bacterial compositions varied according to the site and season of sample collection. Potential pathogenic species such as Bacillus spp., Enterococcus casseliflavus, Klebsiella pneumoniae, and Pseudomonas aeruginosa showed season-specific differences. Results of the network co-occurrence analysis with core genera correlations showed characteristics of bacterial species in lettuce, and provided clues regarding the role of different microbes, including potential pathogens, in this microbiota. Although further studies are needed to determine the specific effects of regional and seasonal characteristics on the lettuce microbiota, our results imply that the 16S rRNA gene-based sequencing approach can be used to detect pathogenic bacteria in lettuce.


Subject(s)
Food Microbiology , Foodborne Diseases/microbiology , Lactuca/microbiology , Microbiota/physiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , DNA, Bacterial/genetics , Geography , Metagenomics , Microbial Interactions , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Seasons , Sequence Analysis, DNA
7.
Food Chem ; 237: 191-197, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28763985

ABSTRACT

This study investigated the effect of atmospheric pressure plasma (APP) treatment on nitrite content and functionality of plant extracts. Ethanolic extracts of Perilla frutescens (EEP) were prepared and treated with APP for 60min. Nitrite content increased from 0 to 45.8mg/l in EEP after APP treatment for 60min. Antimicrobial activity of EEP against Clostridium perfringens and Salmonella Typhimurium was increased by APP with no influence on antioxidative activity (p<0.05). Lyophilized EEP (LEEP) treated with APP for 60min contained 3.74mg/g nitrite. The control (LEEP without APP) contained no nitrite. The minimum inhibitory concentration (MIC) of LEEP for C. perfringens was 200µg/ml. The control did not inhibit C. perfringens growth between 25 and 1000µg/ml. MICs of LEEP and the control against S. Typhimurium were 25 and 50µg/ml, respectively. New nitrite sources with increased antimicrobial activity can be produced from natural plants by APP treatment.


Subject(s)
Perilla frutescens , Atmospheric Pressure , Ethanol , Nitrites , Plant Extracts
8.
Food Sci Biotechnol ; 26(6): 1649-1657, 2017.
Article in English | MEDLINE | ID: mdl-30263702

ABSTRACT

This study revealed the antimicrobial properties of actinonin against major foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus, and Vibrio vulnificus. Among them, actinonin caused growth defect in S. Typhimurium and V. vulnificus. Minimal inhibitory concentration (MIC) values of actinonin were determined by broth microdilution methods. The MICs of actinonin were ≤0.768 µg/ml for S. Typhimurium and ≤0.192 µg/ml for V. vulnificus. Susceptibility to actinonin in both pathogens was measured by colony-forming ability and disc diffusion test. The results showed actinonin had antimicrobial activity against S. Typhimurium and V. vulnificus in a dose-dependent manner. The inhibitory effects on swarming motility were determined, and cytotoxicity of each pathogen against HeLa cells was decreased significantly by actinonin treatment. Furthermore, actinonin showed an antimicrobial efficacy in food models infected with these pathogens. These results demonstrate that actinonin is potentially an effective agent for food sanitization or preservation.

SELECTION OF CITATIONS
SEARCH DETAIL
...