Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Virology ; 531: 93-99, 2019 05.
Article in English | MEDLINE | ID: mdl-30856486

ABSTRACT

Tight junctions enable epithelial cells to form physical barriers that act as an innate immune defense against respiratory infection. However, the involvement of tight junction molecules in paramyxovirus infections, which include various respiratory pathogens, has not been examined in detail. Human parainfluenza virus type 2 (hPIV2) infects airway epithelial cells and causes respiratory illness. In the present study, we found that hPIV2 infection of cultured cells induces expression of claudin-1 (CLDN1), an essential component of tight junctions. This induction seemed to be intrinsically restricted by V, an accessory protein that modulates various host responses, to enable efficient virus propagation. By generating CLDN1 over-expressing and knockout cell lines, we showed that CLDN1 is involved in the restriction of hPIV2 spread via cell-to-cell contact. Taken together, we identified CLDN1 an inhibitory factor for hPIV2 dissemination, and that its V protein acts to counter this.


Subject(s)
Claudin-1/metabolism , Parainfluenza Virus 2, Human/physiology , Rubulavirus Infections/metabolism , Rubulavirus Infections/virology , Claudin-1/genetics , Epithelial Cells/metabolism , Epithelial Cells/virology , Host-Pathogen Interactions , Humans , Parainfluenza Virus 2, Human/genetics , Rubulavirus Infections/genetics , Tight Junctions/metabolism , Tight Junctions/virology , Viral Proteins/genetics , Viral Proteins/metabolism
2.
Virology ; 524: 90-96, 2018 11.
Article in English | MEDLINE | ID: mdl-30165310

ABSTRACT

We previously demonstrated that human parainfluenza virus type 2 (hPIV-2) induces RhoA activation, which promotes its growth. RhoA controls the equilibrium between globular and filamentous actin (F-actin). We found that F-actin formation is induced by wild type (wt) hPIV-2 infection, and that inhibition of F-actin formation by cytochalasin D decreases hPIV-2 growth. In wt RhoA-expressing cells, F-actin formation occurs and hPIV-2 growth is promoted. Overexpression of T19N RhoA, a dominant negative (DN) form of RhoA, inhibits hPIV-2-induced F-actin formation, and suppresses hPIV-2 growth. Immunoprecipitation assays reveal that hPIV-2 V protein binds only to DN RhoA, and this interaction requires its C-terminal Trp residues. F-actin formation is not observed during infection of recombinant hPIV-2 expressing Trp-mutated V protein (VW178H/W182E/W192A). Overexpression of V protein, but not that of VW178H/W182E/W192A, causes F-actin formation. Our results suggest that hPIV-2 V protein enhances hPIV2 growth through RhoA-induced F-actin formation, by selectively binding to inactive RhoA.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Parainfluenza Virus 2, Human/physiology , Viral Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Actin Cytoskeleton/genetics , Actins/genetics , Animals , Chlorocebus aethiops , Enzyme Activation , Humans , Parainfluenza Virus 2, Human/genetics , Parainfluenza Virus 2, Human/growth & development , Vero Cells , Viral Proteins/genetics , rhoA GTP-Binding Protein/genetics
3.
Med Microbiol Immunol ; 206(4): 311-318, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28455649

ABSTRACT

Tetherin is an anti-viral factor that restricts viral budding through tethering virions to the cell surface. The human parainfluenza virus type 2 (hPIV-2) V protein decreases cell surface tetherin in HeLa cells, which constitutively express endogenous tetherin. However, the role of the hPIV-2 V protein in tetherin induction remains unclear. Here, we examined whether hPIV-2 infection itself induces tetherin in HEK293 cells that have no basal expression of tetherin. Unlike influenza A virus (IAV) infection, hPIV-2 infection induced neither tetherin mRNA nor protein expression. In contrast, robust tetherin induction was observed by infection of rPIV-2s carrying V mutants, in which either three Trp residues (W178H/W182E/W192A) or Cys residues (C209/211/214A) that are important for decreasing cell surface tetherin are mutated. hPIV-2 infection also inhibited the induction of tetherin expression by IFN-α and IAV infection. Furthermore, hPIV-2 V protein but not P and VW178H/W182E/W192A suppressed tetherin induction. Our data collectively suggest that the hPIV-2 V protein inhibits tetherin expression induced by several external stimuli.


Subject(s)
Host-Pathogen Interactions , Immune Evasion , Parainfluenza Virus 2, Human/immunology , Parainfluenza Virus 2, Human/physiology , Viral Proteins/metabolism , Antigens, CD , GPI-Linked Proteins/antagonists & inhibitors , HEK293 Cells , Humans , Mutant Proteins/genetics , Mutant Proteins/metabolism , Viral Proteins/genetics
4.
J Virol ; 90(20): 9394-405, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27512058

ABSTRACT

UNLABELLED: Rho GTPases are involved in a variety of cellular activities and are regulated by guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). We found that the activation of Rho GTPases by lysophosphatidic acid promotes the growth of human parainfluenza virus type 2 (hPIV-2). Furthermore, hPIV-2 infection causes activation of RhoA, a Rho GTPase. We hypothesized that Graf1 (also known as ARHGAP26), a GAP, regulates hPIV-2 growth by controlling RhoA signaling. Immunofluorescence analysis showed that hPIV-2 infection altered Graf1 localization from a homogenous distribution within the cytoplasm to granules. Graf1 colocalized with hPIV-2 P, NP, and L proteins. Graf1 interacts with P and V proteins via their N-terminal common region, and the C-terminal Src homology 3 domain-containing region of Graf1 is important for these interactions. In HEK293 cells constitutively expressing Graf1, hPIV-2 growth was inhibited, and RhoA activation was not observed during hPIV-2 infection. In contrast, Graf1 knockdown restored hPIV-2 growth and RhoA activation. Overexpression of hPIV-2 P and V proteins enhanced hPIV-2-induced RhoA activation. These results collectively suggested that hPIV-2 P and V proteins enhanced hPIV-2 growth by binding to Graf1 and that Graf1 inhibits hPIV-2 growth through RhoA inactivation. IMPORTANCE: Robust growth of hPIV-2 requires Rho activation. hPIV-2 infection causes RhoA activation, which is suppressed by Graf1. Graf1 colocalizes with viral RNP (vRNP) in hPIV-2-infected cells. We found that Graf1 interacts with hPIV-2 P and V proteins. We also identified regions in these proteins which are important for this interaction. hPIV-2 P and V proteins enhanced the hPIV-2 growth via binding to Graf1, while Graf1 inhibited hPIV-2 growth through RhoA inactivation.


Subject(s)
GTPase-Activating Proteins/metabolism , Parainfluenza Virus 2, Human/metabolism , Signal Transduction/physiology , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , COS Cells , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Cytoplasm/metabolism , Cytoplasm/virology , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , HeLa Cells , Humans , Vero Cells , src Homology Domains/physiology
5.
J Virol ; 90(17): 7640-6, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27279623

ABSTRACT

UNLABELLED: Receptor destruction has been considered one of the mechanisms of homologous Sendai virus (SeV) interference. However, direct evidence of receptor destruction upon virus infection and its relevance to interference is missing. To investigate a precise mechanism of homologous interference, we established SeV persistently infected cells. The persistently infected cells inhibited superinfection by homologous SeV but supported replication of human parainfluenza virus 2 (hPIV2) and influenza A virus (IAV). We confirmed that SeV particles could not attach to or penetrate the infected cells and that the hemagglutinin-neuraminidase (HN) protein of SeV was involved in the interference. Lectin blot assays showed that the α2,3-linked sialic acids were specifically reduced in the SeV-infected cells, but the level of α2,6-linked sialic acids had not changed. As infection with IAV removed both α2,3- and α2,6-linked sialic acids, especially α2,3-linked sialic acids, IAV-infected cells inhibited superinfection of SeV. These results provide concrete evidence that destruction of the specific SeV receptor, α2,3-linked sialic acids, is relevant to homologous interference by SeV. IMPORTANCE: Viral interference is a classically observed phenomenon, but the precise mechanism is not clear. Using SeV interference, we provide concrete evidence that reduction of the α2,3-linked sialic acid receptor by the HN of SeV is closely related with viral interference. Since SeV infection resulted in decrease of only α2,3-linked sialic acids, IAV, which also utilized α2,6-linked sialic acids to initiate infection, superinfected the SeV-infected cells. In contrast, SeV could not superinfect the IAV-infected cells because both α2,3- and α2,6-linked sialic acids were removed. These results indicate that receptor destruction critically contributes to viral interference.


Subject(s)
HN Protein/metabolism , Receptors, Virus/metabolism , Sendai virus/enzymology , Sendai virus/physiology , Viral Interference , Animals , Cell Line , Humans , Influenza A virus/growth & development , Parainfluenza Virus 2, Human/growth & development , Sialic Acids/metabolism
6.
Med Microbiol Immunol ; 205(3): 209-18, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26582554

ABSTRACT

It has been reported that dual or multiple viruses can coinfect epithelial cells of the respiratory tract. However, little has been reported on in vitro interactions of coinfected viruses. To explore how coinfection of different viruses affects their biological property, we examined growth of influenza A virus (IAV) and human parainfluenza virus type 2 (hPIV2) during coinfection of Vero cells. We found that IAV growth was enhanced by coinfection with hPIV2. The enhanced growth of IAV was not reproduced by coinfection with an hPIV2 mutant with reduced cell fusion activity, or by ectopic expression of the V protein of hPIV2. In contrast, induction of cell fusion by ectopic expression of the hPIV2 HN and F proteins augments IAV growth. hPIV2 coinfection supported IAV growth in cells originated from the respiratory epithelium. The enhancement correlated closely with cell fusion ability of hPIV2 in those cells. These results indicate that cell fusion induced by hPIV2 infection is beneficial to IAV replication and that enhanced viral replication by coinfection with different viruses can modify their pathological consequences.


Subject(s)
Influenza A virus/growth & development , Microbial Interactions , Parainfluenza Virus 2, Human/growth & development , Animals , Cell Fusion , Chlorocebus aethiops , Epithelial Cells/virology , HN Protein/genetics , HN Protein/metabolism , Parainfluenza Virus 2, Human/genetics , Vero Cells , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Virus Cultivation
7.
Microbiol Immunol ; 59(11): 676-83, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26446904

ABSTRACT

Gene expression of nonsegmented negative-strand RNA viruses (nsNSVs) such as parainfluenza viruses requires the RNA synthesis activity of their polymerase L protein; however, the detailed mechanism of this process is poorly understood. In this study, a parainfluenza minireplicon assay expressing secretory Gaussia luciferase (Gluc) was established to analyze large protein (L) activity. Measurement of Gluc expression in the culture medium of cells transfected with the minigenome and viral polymerase components enabled quick and concise calculation of L activity. By comparing the amino acid sequences in conserved region III (CRIII), a putative polymerase-active domain of the L protein, two strictly conserved aspartates were identified in all families of nsNSV. A series of L mutants from human parainfluenza virus type 2 and parainfluenza virus type 5 showed that these aspartates are necessary for reporter gene expression. It was also confirmed that these aspartates are important for the production of viral mRNA and antigenome cRNA, but not for a polymerase-complex formation. These findings suggest that these two aspartates are key players in the nucleotidyl transfer reaction using two metal ions.


Subject(s)
Aspartic Acid/genetics , Copepoda/enzymology , Luciferases/metabolism , Parainfluenza Virus 2, Human/enzymology , Parainfluenza Virus 2, Human/metabolism , Transfection/methods , Viral Proteins/genetics , Viral Proteins/physiology , Virus Replication/physiology , Animals , Cells, Cultured , Conserved Sequence , Humans
8.
Appl Environ Microbiol ; 77(21): 7526-32, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21890671

ABSTRACT

To prevent food-borne bacterial diseases and to trace bacterial contamination events to foods, microbial source tracking (MST) methods provide important epidemiological information. To apply molecular methods to MST, it is necessary not only to amplify bacterial cells to detection limit levels but also to prepare DNA with reduced inhibitory compounds and contamination. Isolates carrying the Clostridium perfringens enterotoxin gene (cpe) on the chromosome or a plasmid rank among the most important food-borne pathogens. Previous surveys indicated that cpe-positive C. perfringens isolates are present in only ∼5% of nonoutbreak food samples and then only at low numbers, usually less than 3 cells/g. In this study, four molecular assays for the detection of cpe-positive C. perfringens isolates, i.e., ordinary PCR, nested PCR, real-time PCR, and loop-mediated isothermal amplification (LAMP), were developed and evaluated for their reliability using purified DNA. For use in the artificial contamination of meat samples, DNA templates were prepared by three different commercial DNA preparation kits. The four molecular assays always detected cpe when >10³ cells/g of cpe-positive C. perfringens were present, using any kit. Of three tested commercial DNA preparation kits, the InstaGene matrix kit appeared to be most suitable for the testing of a large number of samples. By using the InstaGene matrix kit, the four molecular assays efficiently detected cpe using DNA prepared from enrichment culture specimens of meat samples contaminated with low numbers of cpe-positive C. perfringens vegetative cells or spores. Overall, the current study developed molecular assay protocols for MST to detect the contamination of foods with low numbers of cells, and at a low frequency, of cpe-positive C. perfringens isolates.


Subject(s)
Bacterial Toxins/genetics , Bacteriological Techniques/methods , Clostridium perfringens/isolation & purification , Clostridium perfringens/pathogenicity , Enterotoxins/genetics , Meat/microbiology , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
9.
PLoS One ; 6(5): e20376, 2011.
Article in English | MEDLINE | ID: mdl-21655254

ABSTRACT

Clostridium perfringens enterotoxin (CPE) is a major virulence factor for human gastrointestinal diseases, such as food poisoning and antibiotic associated diarrhea. The CPE-encoding gene (cpe) can be chromosomal or plasmid-borne. Recent development of conventional PCR cpe-genotyping assays makes it possible to identify cpe location (chromosomal or plasmid) in type A isolates. Initial studies for developing cpe genotyping assays indicated that all cpe-positive strains isolated from sickened patients were typable by cpe-genotypes, but surveys of C. perfringens environmental strains or strains from feces of healthy people suggested that this assay might not be useful for some cpe-carrying type A isolates. In the current study, a pulsed-field gel electrophoresis Southern blot assay showed that four cpe-genotype untypable isolates carried their cpe gene on a plasmid of ∼65 kb. Complete sequence analysis of the ∼65 kb variant cpe-carrying plasmid revealed no intact IS elements and a disrupted cytosine methyltransferase (dcm) gene. More importantly, this plasmid contains a conjugative transfer region, a variant cpe gene and variant iota toxin genes. The toxin genes encoded by this plasmid are expressed based upon the results of RT-PCR assays. The ∼65 kb plasmid is closely related to the pCPF4969 cpe plasmid of type A isolates. MLST analyses indicated these isolates belong to a unique cluster of C. perfringens. Overall, these isolates carrying a variant functional cpe gene and iota toxin genes represent unique type E strains.


Subject(s)
ADP Ribose Transferases/genetics , Bacterial Toxins/genetics , Clostridium perfringens/genetics , Enterotoxins/genetics , Plasmids/genetics , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...