Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.269
Filter
1.
Environ Sci Technol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135318

ABSTRACT

Vacuum-UV (185 nm, VUV) is widely applied to polish reverse osmosis permeate (ROP), such as the production of electronics-grade ultrapure water. In this study, the VUV oxidation of acetaldehyde, a common carbonyl in ROP, was found to be influenced by anions even at low concentrations. Interestingly, the influencing extent and mechanism varied depending on the anions. Bicarbonate minimally affected the VUV-photon absorption and •OH consumption, but at 5000 µg-C·L-1, it decreased the degradation of acetaldehyde by 58.7% possibly by scavenging organic radicals or other radical chain reactions. Nitrate strongly competed for VUV-photon absorption and •OH scavenging through the formation of nitrite, and at 500 µg-N·L-1, it decreased the removal rate of acetaldehyde degradation by 71.2% and the mineralization rate of dissolved organic carbon by 53.4%. Chloride competed for VUV-photon absorption and also generated reactive chlorine species, which did not affect acetaldehyde degradation but influenced the formation of organic byproducts. The radical chain reactions or activation of anions under VUV irradiation could compensate for the decrease in oxidation performance and need further investigation. In real ROPs, the VUV oxidation of acetaldehyde remained efficient, but mineralization was hindered due to nitrate and chloride anions. This study deepens the understanding of the photochemistry and feasibility of VUV in water with low concentrations of anions.

2.
Sci Rep ; 14(1): 18432, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117709

ABSTRACT

Timely and effective diagnosis of fungal keratitis (FK) is necessary for suitable treatment and avoiding irreversible vision loss for patients. In vivo confocal microscopy (IVCM) has been widely adopted to guide the FK diagnosis. We present a deep learning framework for diagnosing fungal keratitis using IVCM images to assist ophthalmologists. Inspired by the real diagnostic process, our method employs a two-stage deep architecture for diagnostic predictions based on both image-level and sequence-level information. To the best of our knowledge, we collected the largest dataset with 96,632 IVCM images in total with expert labeling to train and evaluate our method. The specificity and sensitivity of our method in diagnosing FK on the unseen test set achieved 96.65% and 97.57%, comparable or better than experienced ophthalmologists. The network can provide image-level, sequence-level and patient-level diagnostic suggestions to physicians. The results show great promise for assisting ophthalmologists in FK diagnosis.


Subject(s)
Keratitis , Microscopy, Confocal , Microscopy, Confocal/methods , Keratitis/microbiology , Keratitis/diagnosis , Keratitis/diagnostic imaging , Humans , Deep Learning , Eye Infections, Fungal/diagnosis , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/diagnostic imaging , Eye Infections, Fungal/pathology , Neural Networks, Computer , Sensitivity and Specificity
3.
Angew Chem Int Ed Engl ; : e202412337, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106111

ABSTRACT

A cascade Nazarov cyclization/dicycloexpansions reaction was developed for the precise synthesis of the angularly fused M/5/N (M = 5, 6; N = 4-9, 13) tricyclic skeletons. The prioritized expansion of the first ring played a critical role in the transformations, due to the release of ring strain, and the nature of the substituents present on the substrate is another influencing factor. This pioneering cascade reaction features broad substrates scope (33 examples), short reaction time, exceptional yields (up to 95%), and remarkable regioselectivities (> 20:1). Exploiting the synthetic application of this cascade reaction, we successfully executed a succinct total synthesis of nominal madreporanone for the first time.

4.
New Phytol ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166427

ABSTRACT

Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post-transfer adaptation of HGT-acquired genes in land plants remain elusive. We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants. HGT-acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT-acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post-transfer adaptation of HGT in land plants. Functional validation of bacteria-derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.

5.
Adv Sci (Weinh) ; : e2400647, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119837

ABSTRACT

The development of acute respiratory distress syndrome (ARDS) in sepsis is associated with substantial morbidity and mortality. However, the molecular pathogenesis underlying sepsis-induced ARDS remains elusive. Neutrophil heterogeneity and dysfunction contribute to uncontrolled inflammation in patients with ARDS. A specific subset of neutrophils undergoing reverse transendothelial migration (rTEM), which is characterized by an activated phenotype, is implicated in the systemic dissemination of inflammation. Using single-cell RNA sequencing (scRNA-seq), it identified functionally activated neutrophils exhibiting the rTEM phenotype in the lung of a sepsis mouse model using cecal ligation and puncture. The prevalence of neutrophils with the rTEM phenotype is elevated in the blood of patients with sepsis-associated ARDS and is positively correlated with disease severity. Mechanically, scRNA-seq and proteomic analys revealed that inflamed endothelial cell (EC) released extracellular vesicles (EVs) enriched in karyopherin subunit beta-1 (KPNB1), promoting abluminal-to-luminal neutrophil rTEM. Additionally, EC-derived EVs are elevated and positively correlated with the proportion of rTEM neutrophils in clinical sepsis. Collectively, EC-derived EV is identified as a critical regulator of neutrophil rTEM, providing insights into the contribution of rTEM neutrophils to sepsis-associated lung injury.

6.
Hypertension ; 81(9): 1895-1909, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38989583

ABSTRACT

BACKGROUND: STIM1 (stromal interaction molecule 1) regulates store-operated calcium entry and is involved in pulmonary artery vasoconstriction and pulmonary artery smooth muscle cell proliferation, leading to pulmonary arterial hypertension (PAH). METHODS: Bioinformatics analysis and a 2-stage matched case-control study were conducted to screen for noncoding variants that may potentially affect STIM1 transcriptional regulation in 242 patients with idiopathic PAH and 414 healthy controls. Luciferase reporter assay, real-time quantitative polymerase chain reaction, western blot, 5-ethynyl-2'-deoxyuridine (EdU) assay, and intracellular Ca2+ measurement were performed to study the mechanistic roles of those STIM1 noncoding variants in PAH. RESULTS: Five noncoding variants (rs3794050, rs7934581, rs3750996, rs1561876, and rs3750994) were identified and genotyped using Sanger sequencing. Rs3794050, rs7934581, and rs1561876 were associated with idiopathic PAH (recessive model, all P<0.05). Bioinformatics analysis showed that these 3 noncoding variants possibly affect the enhancer function of STIM1 or the microRNA (miRNA) binding to STIM1. Functional validation performed in HEK293 and pulmonary artery smooth muscle cells demonstrated that the noncoding variant rs1561876-G (STIM1 mutant) had significantly stronger transcriptional activity than the wild-type counterpart, rs1561876-A, by affecting the transcriptional regulatory function of both hsa-miRNA-3140-5p and hsa-miRNA-4766-5p. rs1561876-G enhanced intracellular Ca2+ signaling in human pulmonary artery smooth muscle cells secondary to calcium-sensing receptor activation and promoted proliferation of pulmonary artery smooth muscle cells under both normoxia and hypoxia conditions, suggesting a possible contribution to PAH development. CONCLUSIONS: The potential clinical implications of the 3 noncoding variants of STIM1, rs3794050, rs7934581, and rs1561876, are 2-fold, as they may help predict the risk and prognosis of idiopathic PAH and guide investigations on novel therapeutic pathway(s).


Subject(s)
Pulmonary Artery , Stromal Interaction Molecule 1 , Humans , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Male , Female , Case-Control Studies , Middle Aged , Adult , Neoplasm Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/physiopathology , Genetic Predisposition to Disease , Muscle, Smooth, Vascular/metabolism , Gene Expression Regulation , Cell Proliferation/genetics , Polymorphism, Single Nucleotide
7.
Curr Med Sci ; 44(4): 759-770, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38990448

ABSTRACT

OBJECTIVE: To determine the factors that contribute to the survival of elderly individuals diagnosed with brain glioma and develop a prognostic nomogram. METHODS: Data from elderly individuals (age ≥65 years) histologically diagnosed with brain glioma were sourced from the Surveillance, Epidemiology, and End Results (SEER) database. The dataset was randomly divided into a training cohort and an internal validation cohort at a 6:4 ratio. Additionally, data obtained from Tangdu Hospital constituted an external validation cohort for the study. The identification of independent prognostic factors was achieved through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis, enabling the construction of a nomogram. Model performance was evaluated using C-index, ROC curves, calibration plot and decision curve analysis (DCA). RESULTS: A cohort of 20 483 elderly glioma patients was selected from the SEER database. Five prognostic factors (age, marital status, histological type, stage, and treatment) were found to significantly impact overall survival (OS) and cancer-specific survival (CSS), with tumor location emerging as a sixth variable independently linked to CSS. Subsequently, nomogram models were developed to predict the probabilities of survival at 6, 12, and 24 months. The assessment findings from the validation queue indicate a that the model exhibited strong performance. CONCLUSION: Our nomograms serve as valuable prognostic tools for assessing the survival probability of elderly glioma patients. They can potentially assist in risk stratification and clinical decision-making.


Subject(s)
Brain Neoplasms , Glioma , Nomograms , SEER Program , Humans , Glioma/mortality , Glioma/pathology , Aged , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Female , Male , Risk Factors , Prognosis , Aged, 80 and over , ROC Curve
8.
Anal Chem ; 96(28): 11498-11507, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38946253

ABSTRACT

The determination of pH values is crucial in various fields, such as analytical chemistry, medical diagnostics, and biochemical research. pH test strips, renowned for their convenience and cost-effectiveness, are commonly utilized for pH qualitative estimation. Recently, quantitative methods for determining pH values using pH test strips have been developed. However, these methods can be prone to errors due to environmental factors, such as lighting conditions, which affect the imaging quality of the pH test strips. To address these challenges, we developed an innovative approach that combines machine learning techniques with pH test strips for the quantitative determination of pH values. Our method involves extracting artificial features from the pH test strip images and combining them across multiple dimensions for comprehensive analysis. To ensure optimal feature selection, we developed a feature selection strategy based on SHAP importance. This strategy helps in identifying the most relevant features that contribute to accurate pH prediction. Furthermore, we integrated multiple machine learning algorithms, employing a robust stacking fusion strategy to establish a highly reliable pH value prediction model. Our proposed method automates the determination of pH values through pH test strips, effectively overcoming the limitations associated with environmental lighting interference. Experimental results demonstrate that this method is convenient, effective, and highly reliable for the determination of pH values.

9.
Medicine (Baltimore) ; 103(28): e38912, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996123

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) infertility has attracted great attention from researchers due to its high incidence. Numerous studies have shown that Chinese medicine is effective in treating this disease, but there is a wide variety of Chinese medicine therapies available, and there is a lack of comparative evaluation of the efficacy of various Chinese medicine combination therapies in the clinic, which requires further in-depth exploration. This study aims to evaluate the efficacy of a combined traditional Chinese medicine (TCM) therapy for the treatment of infertility with PCOS using network meta-analysis (NMA). METHODS: In PubMed, web of Science, Cochrane Library, Embase, China Knowledge Network, Wanfang Data, VIP Database, China Biomedical Literature Database (SinoMed) databases, searchs were conducted for information about the randomized controlled trials (RCTs) of combined TCM therapy for the treatment of infertility with PCOS. Quality evaluation was performed using the Cochrane 5.3 risk of bias assessment tool, and NMA using Stata 16.0. RESULTS: This study comprised 28 RCTs using 8 combined TCM therapies in total. The results of the NMA showed that moxibustion + herbal, fire acupuncture + herbal, acupuncture + herbal, electroacupuncture + herbal, and acupoint application + herbal improved the clinical pregnancy rate better than acupuncture, herbal, and western medicines monotherapy (P < .05). Additionally, ear point pressure + herbal enema + herbal, acupuncture and moxibustion + herbal, fire acupuncture + herbal, and acupuncture + herbal improved the ovulation rate better than acupuncture, herbal, and western medicines monotherapy (P < .05). Moxibustion + herbal, fire acupuncture + herbal, and acupuncture + herbal are the 3 most effective therapies for improving the clinical pregnancy rate. Fire acupuncture + herbal, acupuncture + herbal, and ear point pressure + herbal enema + herbal are the 3 most effective therapies for improving the ovulation rate. CONCLUSION: The combined TCM therapy demonstrated better efficacy for the treatment of infertility with PCOS compared to acupuncture, herbal, and western medicines monotherapy. However, the optimal treatment therapy varied depending on the outcome indicators. Further large sample, high-quality, and standardized RCTs are needed to verify these findings.


Subject(s)
Infertility, Female , Medicine, Chinese Traditional , Polycystic Ovary Syndrome , Randomized Controlled Trials as Topic , Humans , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/therapy , Polycystic Ovary Syndrome/drug therapy , Female , Infertility, Female/therapy , Infertility, Female/etiology , Infertility, Female/drug therapy , Medicine, Chinese Traditional/methods , Combined Modality Therapy , Network Meta-Analysis , Pregnancy , Acupuncture Therapy/methods , Drugs, Chinese Herbal/therapeutic use , Pregnancy Rate
10.
J Food Sci ; 89(7): 4109-4122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957103

ABSTRACT

The elucidation of the interaction mechanism between phospholipids and milk proteins within emulsions is pivotal for comprehending the properties of infant formula fat globules. In this study, multispectral methods and molecular docking were employed to explore the relationship between phosphatidylcholine (PC) and whey protein isolate (WPI). Observations indicate that the binding constant, alongside thermodynamic parameters, diminishes as temperature ascends, hinting at a predominantly static quenching mechanism. Predominantly, van der Waals forces and hydrogen bonds constitute the core interactions between WPI and PC. This assertion is further substantiated by Fourier transform infrared spectroscopy, which verifies PC's influence on WPI's secondary structure. A detailed assessment of thermodynamic parameters coupled with molecular docking reveals that PC predominantly adheres to specific sites within α-lactalbumin, ß-lactoglobulin, and bovine serum albumin, propelled by a synergy of hydrophobic interactions, hydrogen bonding, and van der Waals forces, with binding energies noted at -5.59, -6.71, and -7.85 kcal/mol, respectively. An increment in PC concentration is observed to amplify the emulsification properties of WPI whilst concurrently diminishing the zeta potential. This study establishes a theoretical foundation for applying the PC-WPI interaction mechanism in food.


Subject(s)
Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Phosphatidylcholines , Thermodynamics , Whey Proteins , Whey Proteins/chemistry , Phosphatidylcholines/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Emulsions/chemistry , Lactalbumin/chemistry , Lactalbumin/metabolism , Serum Albumin, Bovine/chemistry , Infant Formula/chemistry
11.
World J Oncol ; 15(4): 695-710, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38993245

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors originating from the digestive system. Tertiary lymphoid structures (TLS), non-lymphoid tissues outside of the lymphoid organs, are closely connected to chronic inflammation and tumorigenesis. However, the detailed relationship between TLS and HCC prognosis remained unclear. In this study, we aimed to construct a TLS-related gene signature for predicting the prognosis of HCC patients. Methods: The Cancer Genome Atlas (TCGA) clinical data from 369 HCC tissues and 50 normal liver tissues were utilized to examine the differential expression of TLS-related genes. Based on least absolute shrinkage and selection operator (LASSO) Cox regression analysis, the prognostic model was constructed using the TCGA cohort and validated in the GSE14520 cohort and International Cancer Genome Consortium (ICGC) cohort. The Kaplan-Meier (KM) and receiver operating characteristic (ROC) curves were employed to validate the predictive ability of the prognostic model. Furthermore, Cox regression analysis was applied to identify whether the TLS score could be employed as an independent prognosis factor. A nomogram was developed to predict the survival probability of HCC patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed for TLS-related genes. Genetic mutation analysis, the CIBERSORT algorithm, and single-sample gene set enrichment analysis (ssGSEA) were used to assess the tumor mutation landscape and immune infiltration. Finally, the role of the TLS score in HCC therapy was investigated. Results: Six genes were included in the construction of our prognostic model (CETP, DNASE1L3, PLAC8, SKAP1, C7, and VNN2), and we validated its accuracy. Survival analysis showed that patients in the high-TLS score group had a significantly better overall survival than those in the low-TLS score group. Univariate, multivariate Cox regression analysis and the establishment of a nomogram indicated that the TLS score could independently function as a potential prognostic marker. A significant association between TLS score and immunity was revealed by an analysis of gene alterations and immune cell infiltration. In addition, two subtypes of the TLS score could accurately predict the effectiveness of sorafenib, transcatheter arterial chemoembolization (TACE), and immunotherapy in HCC patients. Conclusion: In this research, we conducted and validated a prognostic model associated with TLS that may be helpful for predicting clinical outcomes and treatment responsiveness for HCC patients.

12.
CNS Neurosci Ther ; 30(7): e14830, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39046182

ABSTRACT

N6-methyladenosine (m6A) methylation is a vital epigenetic mechanism associated with drug addiction. However, the relationship between m6A modification and oxycodone rewarding is less well explored. Based on an open field test, the present study evaluated oxycodone rewarding using chromatin immunoprecipitation PCR, immunofluorescence, and RNA sequencing. A marked increase in METTL14 protein and a decrease in PP1α protein due to oxycodone abundance in the striatal neurons were observed in a dose- and time-dependent manner. Oxycodone markedly increased LSD1 expression, and decreased H3K4me1 expression in the striatum. In the open field test, intra-striatal injection of METTL14 siRNA, HOTAIR siRNA, or LSD1 shRNA blocked oxycodone-induced increase in locomotor activity. The downregulation of PP1α was also inhibited after treatment with METTL14/HOTAIR siRNA and LSD1 shRNA. Enhanced binding of LSD1 with CoRest and of CoRest with the PP1α gene induced by oxycodone was also reversed by LSD1 shRNA. In addition, H3K4me1 demethylation was also blocked by the treatment. In summary, the investigation confirmed that METTL14-mediated upregulation of HOTAIR resulted in the repression of PP1α, which in turn facilitated the recruitment of LSD1, thus catalyzing H3K4me1 demethylation and promoting oxycodone addiction.


Subject(s)
Methyltransferases , Oxycodone , RNA, Long Noncoding , Animals , Male , Mice , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Demethylation , Histone Demethylases/metabolism , Histone Demethylases/genetics , Histones/metabolism , Lysine/analogs & derivatives , Methyltransferases/metabolism , Methyltransferases/genetics , Mice, Inbred C57BL , Oxycodone/pharmacology , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Up-Regulation
13.
Pharmaceutics ; 16(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39065637

ABSTRACT

Triple-negative breast cancer (TNBC) has been considered a huge clinical unmet need due to its aggressive progression and highly frequent metastasis. mRNA therapeutics supply a potential and versatile immunotherapy of oncology treatment. Here, we developed α-lactalbumin mRNA-lipid nanoparticles (α-LNP) as a potential therapeutical strategy for TNBC. The α-LNP induced the specific IgG antibodies and activated IFN γ-secreting-T cells in vivo. Additionally, the safety of α-LNP also had been demonstrated in vivo. When vaccinated prior to tumor implantation, α-LNP showed a preventive effect against 4T1 tumor growth and extended the survival of the tumor model by activating the memory immune responses. Furthermore, α-LNP administration in combination with surgical removal of neoplasm effectively inhibited the progression and metastasis in the TNBC model. Taken together, our results indicate that the α-LNP vaccine is a promising novel treatment for both therapeutics and prophylactics in TNBC.

14.
Nat Commun ; 15(1): 6074, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025911

ABSTRACT

One-dimensional metallic transition-metal chalcogenide nanowires (TMC-NWs) hold promise for interconnecting devices built on two-dimensional (2D) transition-metal dichalcogenides, but only isotropic growth has so far been demonstrated. Here we show the direct patterning of highly oriented Mo6Te6 NWs in 2D molybdenum ditelluride (MoTe2) using graphite as confined encapsulation layers under external stimuli. The atomic structural transition is studied through in-situ electrical biasing the fabricated heterostructure in a scanning transmission electron microscope. Atomic resolution high-angle annular dark-field STEM images reveal that the conversion of Mo6Te6 NWs from MoTe2 occurs only along specific directions. Combined with first-principles calculations, we attribute the oriented growth to the local Joule-heating induced by electrical bias near the interface of the graphite-MoTe2 heterostructure and the confinement effect generated by graphite. Using the same strategy, we fabricate oriented NWs confined in graphite as lateral contact electrodes in the 2H-MoTe2 FET, achieving a low Schottky barrier of 11.5 meV, and low contact resistance of 43.7 Ω µm at the metal-NW interface. Our work introduces possible approaches to fabricate oriented NWs for interconnections in flexible 2D nanoelectronics through direct metal phase patterning.

15.
Plant Cell ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917246

ABSTRACT

Although the strigolactone (SL) signaling pathway and SL-mediated anthocyanin biosynthesis have been reported, the molecular association between SL signaling and anthocyanin biosynthesis remains unclear. In this study, we identified the SL signal transduction pathway associated with anthocyanin biosynthesis and the crosstalk between gibberellin (GA) and SL signaling in apple (Malus × domestica). ELONGATED HYPOCOTYL5 (HY5) acts as a key node integrating SL signaling and anthocyanin biosynthesis, and the SL response factor AGAMOUS-LIKE MADS-BOX9 (AGL9) promotes anthocyanin biosynthesis by activating HY5 transcription. The SL signaling repressor SUPPRESSOR OF MAX2 1-LIKE8 (SMXL8) interacts with AGL9 to form a complex that inhibits anthocyanin biosynthesis by downregulating HY5 expression. Moreover, the E3 ubiquitin ligase PROTEOLYSIS1 (PRT1) mediates the ubiquitination-mediated degradation of SMXL8, which is a key part of the SL signal transduction pathway associated with anthocyanin biosynthesis. In addition, the GA signaling repressor REPRESSOR-of-ga1-3-LIKE2a (RGL2a) mediates the crosstalk between GA and SL by disrupting the SMXL8-AGL9 interaction that represses HY5 transcription. Taken together, our study reveals the regulatory mechanism of SL-mediated anthocyanin biosynthesis and uncovers the role of SL-GA crosstalk in regulating anthocyanin biosynthesis in apple.

16.
Front Endocrinol (Lausanne) ; 15: 1284283, 2024.
Article in English | MEDLINE | ID: mdl-38919485

ABSTRACT

Background: Clinically, the diagnosis and treatment of cholangiocarcinoma are generally different according to the location of occurrence, and the studies rarely consider the differences between different pathological types. Cholangiocarcinomas in large- and middle-sized intrahepatic bile ducts are mostly mucinous, while in small sized bile duct are not; mucinous extrahepatic cholangiocarcinomas are also more common than mucinous intrahepatic cholangiocarcinoma. However, it is unclear whether these pathological type differences are related to the prognosis. Methods: Data of total 22509 patients was analyzed from Surveillance, Epidemiology, and End Results program database out of which 22299 patients were diagnosed with common adeno cholangiocarcinoma while 210 were diagnosed with mucinous cholangiocarcinoma. Based on the propensity score matching (PSM) analysis, between these two groups' clinical, demographic, and therapeutic features were contrasted. The data were analyzed using Cox and LASSO regression analysis and Kaplan-Meier survival curves. Ultimately, overall survival (OS) and cancer specific survival (CSS) related prognostic models were established and validated in test and external datasets and nomograms were created to forecast these patients' prognosis. Results: There was no difference in prognosis between mucinous cholangiocarcinoma and adeno cholangiocarcinoma. Therefore, we constructed prognostic model and nomogram that can be used for mucinous and adeno cholangiocarcinoma at the same time. By comparing the 9 independent key characteristics i.e. Age, tumor size, the number of primary tumors, AJCC stage, Grade, lymph node status, metastasis, surgery and chemotherapy, risk scores were calculated for each individual. By integrating these two pathological types in OS and CSS prognostic models, effective prognosis prediction results could be achieved in multiple datasets (OS: AUC 0.70-0.87; CSS: AUC 0.74-0.89). Conclusion: Age, tumor size, the number of primary tumors, AJCC stage, Grade, lymph node status, metastasis, surgery and chemotherapy are the independent prognostic factors in OS or CSS of the patients with mucinous and ordinary cholangiocarcinoma. Nomogram that can be used for mucinous and adeno cholangiocarcinoma at the same time is of significance in clinical practice and management of cholangiocarcinoma.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Nomograms , Humans , Male , Cholangiocarcinoma/therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/mortality , Female , Prognosis , Middle Aged , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/therapy , Bile Duct Neoplasms/mortality , Retrospective Studies , Aged , SEER Program , Adult
17.
Plant Biotechnol J ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943653

ABSTRACT

Grain chalkiness is an undesirable trait that negatively regulates grain yield and quality in rice. However, the regulatory mechanism underlying chalkiness is complex and remains unclear. We identified a positive regulator of white-belly rate (WBR). The WBR7 gene encodes sucrose synthase 3 (SUS3). A weak functional allele of WBR7 is beneficial in increasing grain yield and quality. During the domestication of indica rice, a functional G/A variation in the coding region of WBR7 resulted in an E541K amino acid substitution in the GT-4 glycosyltransferase domain, leading to a significant decrease in decomposition activity of WBR7A (allele in cultivar Jin23B) compared with WBR7G (allele in cultivar Beilu130). The NIL(J23B) and knockout line NIL(BL130)KO exhibited lower WBR7 decomposition activity than that of NIL(BL130) and NIL(J23B)COM, resulting in less sucrose decomposition and metabolism in the conducting organs. This caused more sucrose transportation to the endosperm, enhancing the synthesis of storage components in the endosperm and leading to decreased WBR. More sucrose was also transported to the anthers, providing sufficient substrate and energy supply for pollen maturation and germination, ultimately leading to an increase rate of seed setting and increased grain yield. Our findings elucidate a mechanism for enhancing rice yield and quality by modulating sucrose metabolism and allocation, and provides a valuable allele for improved rice quality.

18.
Biomed Pharmacother ; 176: 116931, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870630

ABSTRACT

The lysine-specific demethylase 1 (KDM1A) is reported to be a regulator in learning and memory. However, the effect of KDM1A in oxycodone rewarding memory has yet to be studied. In our study, rewarding memory was assessed by using conditioned place preference (CPP) in male mice. Next generation sequencing and chromatin immunoprecipitation-PCR were used to explore the molecular mechanisms. Oxycodone significantly decreased PP1α mRNA and protein levels in hippocampal neurons. Oxycodone significantly increased KDM1A and H3K4me1 levels, while significantly decreased H3K4me2 levels in a time- and dose-dependent manner. Behavioral data demonstrated that intraperitoneal injection of ORY-1001 (KDM1A inhibitor) or intra-hippocampal injection of KDM1A siRNA/shRNA blocked the acquisition and expression of oxycodone CPP and facilitated the extinction of oxycodone CPP. The decrease of PP1α was markedly blocked by the injection of ORY-1001 or KDM1A siRNA/shRNA. Oxycodone-induced enhanced binding of CoRest with KDM1A and binding of CoRest with the PP1α promoter was blocked by ORY-1001. The level of H3K4me2 demethylation was also decreased by the treatment. The results suggest that oxycodone-induced upregulation of KDM1A via demethylation of H3K4me2 promotes the binding of CoRest with the PP1α promoter, and the subsequent decrease in PP1α expression in hippocampal neurons may contribute to oxycodone reward.


Subject(s)
Epigenesis, Genetic , Histone Demethylases , Oxycodone , Animals , Male , Epigenesis, Genetic/drug effects , Mice , Oxycodone/pharmacology , Histone Demethylases/metabolism , Histone Demethylases/genetics , Hippocampus/drug effects , Hippocampus/metabolism , Reward , Conditioning, Psychological/drug effects , Mice, Inbred C57BL , Histones/metabolism , Neurons/drug effects , Neurons/metabolism , Memory/drug effects
19.
Inorg Chem ; 63(24): 11146-11154, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38838348

ABSTRACT

Surface ligands play crucial roles in modifying the properties of metal nanoclusters and stabilizing atomically precise structures, and also serve as vital linkers for constructing cluster-based coordination polymers. In this study, we present the results of the solvothermal synthesis of eight novel copper alkynyl clusters incorporating pyridine ligands using a one-pot method. The resulting compounds underwent characterization through elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD). Our observations revealed that distinct pyridine ligands with varying lengths and coordination sites exert significant influence on the structure and dimensionality of the clusters. The structural diversity of these clusters led to the formation of one-dimensional (1D), two-dimensional (2D), or dimer arrangements linked by seven pyridine bridging ligands. Remarkably, these complexes exhibited unique UV-vis absorption and photoluminescence properties, which were influenced by the specific bridging ligand and structural framework. Furthermore, density functional theory (DFT) calculations demonstrated the capability of the conjugated system in the pyridine ligand to impact the band gap of clusters. This study not only unveils the inherent structural diversity in coordination polymers based on copper alkynyl clusters but also offers valuable insights into harnessing ligand engineering for structural and property modulation.

20.
Ying Yong Sheng Tai Xue Bao ; 35(4): 985-996, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884233

ABSTRACT

The southwestern region of China is the largest exposed karst area in the world and serves as an important ecological security barrier for the upstream of Yangtze River and Pearl River. Different from the critical zone of non-karst areas, the epikarst, formed by an interwoven network of denudation pores, is the core area of karst critical zone. Water is the most active component that participates in internal material cycle and energy flow within the critical zone. We reviewed relevant research conducted in the southwestern region from three aspects: the characte-rization of critical zone structure, the hydrological processes of soil-epikarst system, and their model simulations. We further proposed potential research hotpots. The main approach involved multi-scale and multi-method integrated observations, as well as interdisciplinary collaboration. Precisely characterizing the eco-hydrological processes of the vegetation-soil-epikarst coupling system was a new trend in the future research. This review would provide scientific reference for further studies on hydrological processes in critical zones and regional hydrological water resource management in karst areas.


Subject(s)
Ecosystem , Hydrology , China , Soil/chemistry , Water Movements , Rivers , Groundwater , Conservation of Water Resources/methods , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL