Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Plant Pathol J ; 40(1): 83-97, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326961

ABSTRACT

Fusarium graminearum, the causal agent of Fusarium head blight (FHB) in cereal crops, employs the production of sexual fruiting bodies (perithecia) on plant debris as a strategy for overwintering and dissemination. In an artificial condition (e.g., carrot agar medium), the F. graminearum Z3643 strain was capable of producing perithecia predominantly in the central region of the fungal culture where aerial hyphae naturally collapsed. To unravel the intricate relationship between natural aerial hyphae collapse and sexual development in this fungus, we focused on 699 genes differentially expressed during aerial hyphae collapse, with 26 selected for further analysis. Targeted gene deletion and quantitative real-time PCR analyses elucidated the functions of specific genes during natural aerial hyphae collapse and perithecium formation. Furthermore, comparative gene expression analyses between natural collapse and artificial removal conditions reveal distinct temporal profiles, with the latter inducing a more rapid and pronounced response, particularly in MAT gene expression. Notably, FGSG_09210 and FGSG_09896 play crucial roles in sexual development and aerial hyphae growth, respectively. Taken together, it is plausible that if aerial hyphae collapse occurs on plant debris, it may serve as a physical cue for inducing perithecium formation in crop fields, representing a survival strategy for F. graminearum during winter. Insights into the molecular mechanisms underlying aerial hyphae collapse provides offer potential strategies for disease control against FHB caused by F. graminearum.

2.
Cancers (Basel) ; 14(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35267540

ABSTRACT

BACKGROUND: Tamoxifen (tam) is widely used to treat estrogen-positive breast cancer. However, cancer recurrence after chemotherapy remains a major obstacle to achieve good patient prognoses. In this study, we aimed to identify genes responsible for epigenetic regulation of tam resistance in breast cancer. METHODS: Methylation microarray data were analyzed to screen highly hypomethylated genes in tam resistant (tamR) breast cancer cells. Quantitative RT-PCR, Western blot analysis, and immunohistochemical staining were used to quantify expression levels of genes in cultured cells and cancer tissues. Effects of matrix metalloproteinase-1 (MMP1) expression on cancer cell growth and drug resistance were examined through colony formation assays and flow cytometry. Xenografted mice were generated to investigate the effects of MMP1 on drug resistance in vivo. RESULTS: MMP1 was found to be hypomethylated and overexpressed in tamR MCF-7 (MCF-7/tamR) cells and in tamR breast cancer tissues. Methylation was found to be inversely associated with MMP1 expression level in breast cancer tissues, and patients with lower MMP1 expression exhibited a better prognosis for survival. Downregulating MMP1 using shRNA induced tam sensitivity in MCF-7/tamR cells along with increased apoptosis. The xenografted MCF-7/tamR cells that stably expressed short hairpin RNA (shRNA) against MMP1 exhibited retarded tumor growth compared to that in cells expressing the control shRNA, which was further suppressed by tam. CONCLUSIONS: MMP1 can be upregulated through promoter hypomethylation in tamR breast cancer, functioning as a resistance driver gene. MMP1 can be a potential target to suppress tamR to achieve better prognoses of breast cancer patients.

3.
Fungal Genet Biol ; 160: 103683, 2022 05.
Article in English | MEDLINE | ID: mdl-35278684

ABSTRACT

Fusarium graminearum is the causal agent of Fusarium head blight in cereal crops. As in other filamentous ascomycetes, F. graminearum contains genes encoding putative hydrophobins, which are small secreted amphiphilic proteins with eight conserved cysteine residues. Here, we investigated the roles of all five hydrophobin genes (designated FgHyd1, FgHyd2, FgHyd3, FgHyd4, and FgHyd5) in various mycological traits of F. graminearum. Gene expression analyses revealed that the five FgHyd genes, all of which were under the control of G protein signaling or velvet complex proteins, were differentially expressed under various developmental conditions. Three genes (FgHyd1, FgHyd2, and FgHyd3) were constitutively expressed in all aerial structures examined (hyphae, conidia, and perithecia), and two genes (FgHyd1 and FgHyd2) were also expressed in submerged hyphae. FgHyd3 was exclusively expressed in aerial hyphae on solid surfaces, including rice grains. These genes showed markedly reduced expression in F. asiaticum, which was a closely related to F. graminearum but exhibited different mycological traits from F. graminearum. Phenotypic analyses of various gene deletion strains, including the quintuple deletion (ΔFgHyd12345) strain, confirmed that in addition to their typical functions, all five FgHyd genes were involved in other traits, such as conidiation, pathogenicity, and secondary metabolism in F. graminearum. Both RNA-seq and chemical analyses confirmed that ΔFgHyd led to overproduction of specific terpenoid compounds (e.g., trichothecenes), which has not been reported previously. Nevertheless, the lack of complete phenotypic loss of any of the traits examined, even in the ΔFgHyd12345 strain, and little cumulative action of all five FgHyd genes strongly suggest that all five hydrophobins are redundant in function and are not absolutely essential for these fungal traits in F. graminearum.


Subject(s)
Fusarium , Fungal Proteins/metabolism , Plant Diseases/microbiology , Secondary Metabolism/genetics , Spores, Fungal
4.
J Ginseng Res ; 45(6): 754-762, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34764730

ABSTRACT

BACKGROUND: Ginsenoside Rh2, a major saponin derivative in ginseng extract, is recognized for its anticancer activities. Compared to coding genes, studies on long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) that are regulated by Rh2 in cancer cells, especially on competitive endogenous RNA (ceRNA) are sparse. METHODS: LncRNAs whose promoter DNA methylation level was significantly altered by Rh2 were screened from methylation array data. The effect of STXBP5-AS1, miR-4425, and RNF217 on the proliferation and apoptosis of MCF-7 breast cancer cells was monitored in the presence of Rh2 after deregulating the corresponding gene. The ceRNA relationship between STXBP5-AS1 and miR-4425 was examined by measuring the luciferase activity of a recombinant luciferase/STXBP5-AS1 plasmid construct in the presence of mimic miR-4425. RESULTS: Inhibition of STXBP5-AS1 decreased apoptosis but stimulated growth of the MCF-7 cells, suggesting tumor-suppressive activity of the lncRNA. MiR-4425 was identified to have a binding site on STXBP5-AS1 and proven to be downregulated by STXBP5-AS1 as well as by Rh2. In contrast to STXBP5-AS1, miR-4425 showed pro-proliferation activity by inducing a decrease in apoptosis but increased growth of the MCF-7 cells. MiR-4425 decreased luciferase activity from the luciferase/STXBP5-AS1 construct by 26%. Screening the target genes of miR-4425 and Rh2 revealed that Rh2, STXBP5-AS1, and miR-4425 consistently regulated tumor suppressor RNF217 at both the RNA and protein level. CONCLUSION: LncRNA STXBP5-AS1 is upregulated by Rh2 via promoter hypomethylation and acts as a ceRNA, sponging the oncogenic miR-4425. Therefore, Rh2 controls the STXBP5-AS1/miR-4425/RNF217 axis to suppress breast cancer cell growth.

5.
Am J Cancer Res ; 11(6): 2568-2589, 2021.
Article in English | MEDLINE | ID: mdl-34249416

ABSTRACT

Epigenetic events have successfully explained the cause of various cancer types, but little is known about tamoxifen resistance (TamR) that induces cancer recurrence. In this study, via genome-wide methylation analysis in MCF-7/TamR cells we show that elongation of very-long chain fatty acid protein 2 (ELOVL2) was hypermethylated and downregulated in the samples from TamR breast cancer patients (n = 28) compared with those from Tam-sensitive (TamS) patients (n = 33) (P < 0.001). Strikingly, in addition to having tumor suppressor activity, ELOVL2 was shown to recover Tam sensitivity up to 70% in the MCF-7/TamR cells and in a xenograft mouse model. A group of genes in the AKT and ERa signaling pathways, e.g., THEM4, which play crucial roles in drug resistance, were found to be regulated by ELOVL2. This study implies that the deregulation of a gene in fatty acid metabolism can lead to drug resistance, giving insight into the development of a new therapeutic strategy for drug-resistant breast cancer.

6.
J Fungi (Basel) ; 7(5)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065383

ABSTRACT

Lichens are prolific producers of natural products of polyketide origin. We previously described a culture of lichen-forming fungus (LFF) Cladonia macilenta that produces biruloquinone, a purple pigment that is a phenanthraquinone rarely found in nature. However, there was no genetic information on the biosynthesis of biruloquinone. To identify a biosynthetic gene cluster for biruloquinone, we mined polyketide synthase (PKS) genes from the genome sequence of a LFF isolated from thalli of C. macilenta. The 38 PKS in C. macilenta are highly diverse, many of which form phylogenetic clades with PKS previously characterized in non-lichenized fungi. We compared transcriptional profiles of the 38 PKS genes in two chemotypic variants, one producing biruloquinone and the other producing no appreciable metabolite in vitro. We identified a PKS gene (hereafter PKS21) that was highly upregulated in the LFF that produces biruloquinone. The boundaries of a putative biruloquinone gene cluster were demarcated by co-expression patterns of six clustered genes, including the PKS21. Biruloquinone gene clusters exhibited a high degree of synteny between related species. In this study we identified a novel PKS family responsible for the biosynthesis of biruloquinone through whole-transcriptome analysis.

7.
mBio ; 12(3): e0111121, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34154413

ABSTRACT

The depside and depsidone series compounds of polyketide origin accumulate in the cortical or medullary layers of lichen thalli. Despite the taxonomic and ecological significance of lichen chemistry and its pharmaceutical potentials, there has been no single piece of genetic evidence linking biosynthetic genes to lichen substances. Thus, we systematically analyzed lichen polyketide synthases (PKSs) for categorization and identification of the biosynthetic gene cluster (BGC) involved in depside/depsidone production. Our in-depth analysis of the interspecies PKS diversity in the genus Cladonia and a related Antarctic lichen, Stereocaulon alpinum, identified 45 BGC families, linking lichen PKSs to 15 previously characterized PKSs in nonlichenized fungi. Among these, we identified highly syntenic BGCs found exclusively in lichens producing atranorin (a depside). Heterologous expression of the putative atranorin PKS gene (coined atr1) yielded 4-O-demethylbarbatic acid, found in many lichens as a precursor compound, indicating an intermolecular cross-linking activity of Atr1 for depside formation. Subsequent introductions of tailoring enzymes into the heterologous host yielded atranorin, one of the most common cortical substances of macrolichens. Phylogenetic analysis of fungal PKS revealed that the Atr1 is in a novel PKS clade that included two conserved lichen-specific PKS families likely involved in biosynthesis of depsides and depsidones. Here, we provide a comprehensive catalog of PKS families of the genus Cladonia and functionally characterize a biosynthetic gene cluster from lichens, establishing a cornerstone for studying the genetics and chemical evolution of diverse lichen substances. IMPORTANCE Lichens play significant roles in ecosystem function and comprise about 20% of all known fungi. Polyketide-derived natural products accumulate in the cortical and medullary layers of lichen thalli, some of which play key roles in protection from biotic and abiotic stresses (e.g., herbivore attacks and UV irradiation). To date, however, no single lichen product has been linked to respective biosynthetic genes with genetic evidence. Here, we identified a gene cluster family responsible for biosynthesis of atranorin, a cortical substance found in diverse lichen species, by categorizing lichen polyketide synthase and reconstructing the atranorin biosynthetic pathway in a heterologous host. This study will help elucidate lichen secondary metabolism, harnessing the lichen's chemical diversity, hitherto obscured due to limited genetic information on lichens.


Subject(s)
Biosynthetic Pathways/genetics , Fungal Proteins/genetics , Hydroxybenzoates/metabolism , Lichens/chemistry , Lichens/genetics , Multigene Family , Polyketide Synthases/genetics , Ascomycota/chemistry , Ascomycota/genetics , Gene Expression , Lichens/classification , Phylogeny , Polyketide Synthases/classification , Polyketide Synthases/metabolism , Polyketides/metabolism
8.
Biomolecules ; 11(1)2021 01 18.
Article in English | MEDLINE | ID: mdl-33477683

ABSTRACT

Ginsenoside Rg3 exerts antiproliferation activity on cancer cells by regulating diverse noncoding RNAs. However, little is known about the role of long noncoding RNAs (lncRNAs) or their relationship with competitive endogenous RNA (ceRNA) in Rg3-treated cancer cells. Here, a lncRNA (ATXN8OS) was found to be downregulated via Rg3-mediated promoter hypermethylation in MCF-7 breast cancer cells. SiRNA-induced downregulation of ATXN8OS decreased cell proliferation but increased apoptosis, suggesting that the noncoding RNA possessed proproliferation activity. An in silico search for potential ATXN8OS-targeting microRNAs (miRs) identified a promising candidate (miR-424-5p) based on its high binding score. As expected, miR-424-5p suppressed proliferation and stimulated apoptosis of the MCF-7 cells. The in silico miR-target-gene prediction identified 200 potential target genes of miR-424-5p, which were subsequently narrowed down to seven that underwent hypermethylation at their promoter by Rg3. Among them, three genes (EYA1, DACH1, and CHRM3) were previously known oncogenes and were proven to be oppositely regulated by ATXN8OS and miR-424-5p. When taken together, Rg3 downregulated ATXN8OS that inhibited the tumor-suppressive miR-424-5p, leading to the downregulation of the oncogenic target genes.


Subject(s)
Breast Neoplasms/genetics , Carcinogenesis/genetics , Genes, Tumor Suppressor , Ginsenosides/pharmacology , MicroRNAs/genetics , RNA, Long Noncoding/metabolism , Base Sequence , Carcinogenesis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MicroRNAs/metabolism , Models, Biological , RNA, Long Noncoding/genetics
9.
Environ Microbiol ; 23(4): 1972-1990, 2021 04.
Article in English | MEDLINE | ID: mdl-33169919

ABSTRACT

Secondary metabolism is intimately linked to developmental processes in filamentous fungi. In a previous study, we revealed that several polyketide synthase (PKS) genes, including FgPKS7, are specifically induced during formation of the sexual fruiting body (perithecium) in the cereal pathogen Fusarium graminearum. The function of PKS7, which is essential for perithecial development and hyphal growth, is interchangeable between two phylogenetically related species, F. graminearum and F. asiaticum, but not conserved in the more distantly related species F. fujikuroi and F. neocosmosporiellum. FgPKS7 is under the control of global or upstream regulators including the mating-type (MAT) locus and regulates numerous downstream genes that are transcriptionally specific to and functionally essential for sexual development, several other PKS genes, and ABC transporter genes for azole resistance in F. graminearum. FgPKS7 is an essential element for proper sexual development and participates in a regulatory network controlled by the MAT locus. Although the chemical identity of FgPKS7 remains unclear, FgPKS7 is likely involved in chemical reaction(s) for synthesis of metabolite(s) that control or promote perithecial maturation in F. graminearum. This study provides in-depth insights into the direct role of secondary metabolites in sexual development of filamentous fungi.


Subject(s)
Fusarium , Edible Grain/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fusarium/genetics , Fusarium/metabolism , Gene Expression Regulation, Fungal , Reproduction
10.
Cancers (Basel) ; 12(9)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947888

ABSTRACT

Cold atmospheric plasma (CAP) can induce cancer cell death. The majority of gene regulation studies have been biased towards reactive oxygen species (ROS) among the physicochemical components of CAP. The current study aimed to systemically determine the distribution of target genes regulated by the ROS and non-ROS constituents of CAP. Genome-wide expression data from a public database, which were obtained after treating U937 leukemia and SK-mel-147 melanoma cells with CAP or H2O2, were analyzed, and gene sets regulated by either or both of them were identified. The results showed 252 and 762 genes in H2O2-treated U937 and SK-mel-147 cells, respectively, and 112 and 843 genes in CAP-treated U937 and SK-mel-147 cells, respectively, with expression changes higher than two-fold. Notably, only four and two genes were regulated by H2O2 and CAP in common, respectively, indicating that non-ROS constituents were responsible for the regulation of the majority of CAP-regulated genes. Experiments using ROS and nitrogen oxide synthase (NOS) inhibitors demonstrated the ROS- and reactive nitrogen species (RNS)-independent regulation of PTGER3 and HSPA6 when U937 cancer cells were treated with CAP. Taken together, this study identified CAP-specific genes regulated by constituents other than ROS or RNS and could contribute to the annotation of the target genes of specific constituents in CAP.

11.
Plant Pathol J ; 35(6): 543-552, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31832035

ABSTRACT

Fusarium asiaticum of the F. graminearum species complex causes head blight in small-grain cereals. The nivalenol (NIV) chemotypes of F. asiaticum is more common than the deoxynivalenol (DON) chemotypes of F. asiaticum or F. graminearum in Korea. To understand the prevalence of F. asiaticum-NIV in Korean cereals, we characterized the biological traits of 80 cereal isolates of F. asiaticum producing NIV or 3-acetyl-deoxynivalenol (3-ADON), and 54 F. graminearum with 3-ADON or 15-acetyl-deoxynivalenol (15-ADON). There was no significant difference in mycelial growth between the chemotypes, but F. asiaticum isolates grew approximately 30% faster than F. graminearum isolates on potato dextrose agar. Sexual and asexual reproduction capacities differed markedly between the two species. Both chemotypes of F. graminearum (3-ADON and 15-ADON) produced significantly higher numbers of perithecia and conidia than F. asiaticum-NIV. The highest level of mycotoxins (sum of trichothecenes and zearalenone) was produced by F. graminearum-3-ADON on rice medium, followed by F. graminearum-15-ADON, F. asiaticum-3-ADON, and F. asiaticum-NIV. Zearalenone levels were correlated with DON levels in some chemotypes, but not with NIV levels. Disease assessment on barley, maize, rice, and wheat revealed that both F. asiaticum and F. graminearum isolates were virulent toward all crops tested. However, there is a tendency that virulence levels of F. asiaticum-NIV isolates on rice were higher than those of F. graminearum isolates. Taken together, the phenotypic traits found among the Korean F. asiaticum-NIV isolates suggest an association with their host adaptation to certain environments in Korea.

12.
Cancers (Basel) ; 11(12)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847101

ABSTRACT

Paclitaxel (Tx) is a widely used therapeutic chemical for breast cancer treatment; however, cancer recurrence remains an obstacle for improved prognosis of cancer patients. In this study, cold atmospheric plasma (CAP) was tested for its potential to overcome the drug resistance. After developing Tx-resistant MCF-7 (MCF-7/TxR) breast cancer cells, CAP was applied to the cells, and its effect on the recovery of drug sensitivity was assessed in both cellular and molecular aspects. Sensitivity to Tx in the MCF-7/TxR cells was restored up to 73% by CAP. A comparison of genome-wide expression profiles between the TxR cells and the CAP-treated cells identified 49 genes that commonly appeared with significant changes. Notably, 20 genes, such as KIF13B, GOLM1, and TLE4, showed opposite expression profiles. The protein expression levels of selected genes, DAGLA and CEACAM1, were recovered to those of their parental cells by CAP. Taken together, CAP inhibited the growth of MCF-7/TxR cancer cells and recovered Tx sensitivity by resetting the expression of multiple drug resistance-related genes. These findings may contribute to extending the application of CAP to the treatment of TxR cancer.

13.
Mol Plant Microbe Interact ; 31(11): 1154-1165, 2018 11.
Article in English | MEDLINE | ID: mdl-29792566

ABSTRACT

The Southern corn leaf blight (SCLB) epidemic of 1970 devastated fields of T-cytoplasm corn planted in monoculture throughout the eastern United States. The epidemic was driven by race T, a previously unseen race of Cochliobolus heterostrophus. A second fungus, Phyllosticta zeae-maydis, with the same biological specificity, appeared coincidentally. Race T produces T-toxin, while Phyllosticta zeae-maydis produces PM-toxin, both host-selective polyketide toxins necessary for supervirulence. The present abundance of genome sequences offers an opportunity to tackle the evolutionary origins of T- and PM- toxin biosynthetic genes, previously thought unique to these species. Using the C. heterostrophus genes as probes, we identified orthologs in six additional Dothideomycete and three Eurotiomycete species. In stark contrast to the genetically fragmented race T Tox1 locus that encodes these genes, all newly found Tox1-like genes in other species reside at a single collinear locus. This compact arrangement, phylogenetic analyses, comparisons of Tox1 protein tree topology to a species tree, and Tox1 gene characteristics suggest that the locus is ancient and that some species, including C. heterostrophus, gained Tox1 by horizontal gene transfer. C. heterostrophus and Phyllosticta zeae-maydis did not exchange Tox1 DNA at the time of the SCLB epidemic, but how they acquired Tox1 remains uncertain. The presence of additional genes in Tox1-like clusters of other species, although not in C. heterostrophus and Phyllosticta zeae-maydis, suggests that the metabolites produced differ from T- and PM-toxin.


Subject(s)
Ascomycota/genetics , Fungal Proteins/genetics , Mycotoxins/metabolism , Plant Diseases/microbiology , Zea mays/microbiology , Ascomycota/metabolism , Biological Evolution , Fungal Proteins/metabolism , Multigene Family , Mutation , Mycotoxins/genetics , Phylogeny , Plant Leaves/microbiology
14.
Int J Food Microbiol ; 267: 62-69, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29291460

ABSTRACT

To assess the risk of fumonisin contamination in Korean cereals, we isolated colonies of the Fusarium fujikuroi species complex (FFSC) from barley, maize, rice and soybean samples from 2011 to 2015. A total of 878 FFSC strains were isolated mostly from maize and rice, and species identity of the isolates were determined using the DNA sequence of the translation elongation factor 1-α (TEF-1α) and RNA polymerase II (RPB2) genes. Fusaria recovered from Korean cereals included F. fujikuroi (317 isolates and a frequency of 36%), F. proliferatum (212 isolates and 24.1%), F. verticillioides (170 isolates and 19.4%), F. concentricum (86 strains and 9.8%), F. andiyazi (56 isolates and 6.4%), F. subglutinans (28 isolates and 3.2%), F. thapsinum (5 isolates and 0.6%), and F. circinatum (2 isolates and 0.2%). The rice samples were dominated by F. fujikuroi (47.4%), F. proliferatum (27.3%), and F. concentricum (15.1%), whereas maize samples were dominated by F. verticillioides (33.9%), F. fujikuroi (25.3%), and F. proliferatum (21.1%). A phylogenetic analysis of 70 representative isolates demonstrated that each species was resolved as genealogically exclusive in the ML tree. Fumonisin production potential was evaluated using a PCR assay for the fumonisin biosynthesis gene, FUM1 in all of the isolates. Most of the isolates tested (94%) were positive for FUM1. All of the isolates assigned to F. fujikuroi, F. proliferatum, F. verticillioides and F. thapsinum were positive for FUM1 irrespective of their host origin. Seventy-seven representative isolates positive for FUM1 were examined for fumonisin production in rice medium. The majority of F. proliferatum (26/27, 96.3%), F. verticillioides (16/17, 94.1%) and F. fujikuroi (19/25, 76.0%) produced both FB1 and FB2. Notably, 16 of 19 fumonisin-producing F. fujikuroi produced >1000µg/g of fumonisins (FB1+FB2) in rice medium, which is higher than that in previous reports. These results suggest that F. fujikuroi can produce high levels of fumonisins similar to F. verticillioides and F. proliferatum.


Subject(s)
Edible Grain/chemistry , Edible Grain/microbiology , Fumonisins/chemistry , Fusarium/isolation & purification , Biodiversity , Fumonisins/analysis , Fumonisins/metabolism , Fusarium/classification , Fusarium/genetics , Peptide Elongation Factor 1/genetics , Phylogeny , RNA Polymerase II/genetics
15.
PLoS Pathog ; 13(10): e1006670, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29073267

ABSTRACT

Fusarium fujikuroi causes bakanae ("foolish seedling") disease of rice which is characterized by hyper-elongation of seedlings resulting from production of gibberellic acids (GAs) by the fungus. This plant pathogen is also known for production of harmful mycotoxins, such as fusarins, fusaric acid, apicidin F and beauvericin. Recently, we generated the first de novo genome sequence of F. fujikuroi strain IMI 58289 combined with extensive transcriptional, epigenetic, proteomic and chemical product analyses. GA production was shown to provide a selective advantage during infection of the preferred host plant rice. Here, we provide genome sequences of eight additional F. fujikuroi isolates from distant geographic regions. The isolates differ in the size of chromosomes, most likely due to variability of subtelomeric regions, the type of asexual spores (microconidia and/or macroconidia), and the number and expression of secondary metabolite gene clusters. Whilst most of the isolates caused the typical bakanae symptoms, one isolate, B14, caused stunting and early withering of infected seedlings. In contrast to the other isolates, B14 produced no GAs but high amounts of fumonisins during infection on rice. Furthermore, it differed from the other isolates by the presence of three additional polyketide synthase (PKS) genes (PKS40, PKS43, PKS51) and the absence of the F. fujikuroi-specific apicidin F (NRPS31) gene cluster. Analysis of additional field isolates confirmed the strong correlation between the pathotype (bakanae or stunting/withering), and the ability to produce either GAs or fumonisins. Deletion of the fumonisin and fusaric acid-specific PKS genes in B14 reduced the stunting/withering symptoms, whereas deletion of the PKS51 gene resulted in elevated symptom development. Phylogenetic analyses revealed two subclades of F. fujikuroi strains according to their pathotype and secondary metabolite profiles.


Subject(s)
Fusarium/genetics , Fusarium/pathogenicity , Oryza/microbiology , Plant Diseases/microbiology , Fungal Proteins/biosynthesis , Fusariosis/genetics , Fusarium/metabolism , Genes, Fungal/genetics , Phylogeny , Virulence
16.
PLoS Genet ; 13(9): e1006981, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28892488

ABSTRACT

The filamentous fungus Chromocrea spinulosa (Trichoderma spinulosum) exhibits both self-fertile (homothallic) and self-sterile (heterothallic) sexual reproductive behavior. Self-fertile strains produce progeny cohorts that are 50% homothallic, 50% heterothallic. Heterothallic progeny can mate only with homothallic strains, and progeny also segregate 50% homothallic, 50% heterothallic. Sequencing of the mating type (MAT) region of homothallic and heterothallic strains revealed that both carry an intact MAT1-1 locus with three MAT1-1 genes (MAT1-1-1, MAT1-1-2, MAT1-1-3), as previously described for the Sordariomycete group of filamentous fungi. Homothallic strains, however, have a second version of MAT with the MAT1-2 locus genetically linked to MAT1-1. In this version, the MAT1-1-1 open reading frame is split into a large and small fragment and the truncated ends are bordered by 115bp direct repeats (DR). The MAT1-2-1 gene and additional sequences are inserted between the repeats. To understand the mechanism whereby C. spinulosa can exhibit both homothallic and heterothallic behavior, we utilized molecular manipulation to delete one of the DRs from a homothallic strain and insert MAT1-2 into a heterothallic strain. Mating assays indicated that: i) the DRs are key to homothallic behavior, ii) looping out of MAT1-2-1 via intra-molecular homologous recombination between the DRs in self-fertile strains results in two nuclear types in an individual (one carrying both MAT1-1 and MAT1-2 and one carrying MAT1-1 only), iii) self-fertility is achieved by inter-nuclear recognition between these two nuclear types before meiosis, iv) the two types of nuclei are in unequal proportion, v) having both an intact MAT1-1-1 and MAT1-2-1 gene in a single nucleus is not sufficient for self-fertility, and vi) the large truncated MAT1-1-1 fragment is expressed. Comparisons with MAT regions of Trichoderma reesei and Trichoderma virens suggest that several crossovers between misaligned parental MAT chromosomes may have led to the MAT architecture of homothallic C. spinulosa.


Subject(s)
Fungal Proteins/genetics , Genes, Mating Type, Fungal/genetics , Reproduction/genetics , Trichoderma/genetics , Cell Nucleus/genetics , Cytoplasm/genetics , Fertility/genetics , Meiosis/genetics , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics , Trichoderma/growth & development
17.
Korean J Fam Med ; 37(4): 242-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27468343

ABSTRACT

BACKGROUND: The relationship between serum homocysteine levels and non-alcoholic fatty liver disease is poorly understood. This study aims to investigate the sex-specific relationship between serum homocysteine level and non-alcoholic fatty liver disease in the Korean population. METHODS: This cross-sectional study included 150 men and 132 women who participated in medical examination programs in Korea from January 2014 to December 2014. Patients were screened for fatty liver by abdominal ultrasound and patient blood samples were collected to measure homocysteine levels. Patients that consumed more than 20 grams of alcohol per day were excluded from this study. RESULTS: The homocysteine level (11.56 vs. 8.05 nmol/L) and the proportion of non-alcoholic fatty liver disease (60.7% vs. 19.7%) were significantly higher in men than in women. In men, elevated serum homocysteine levels were associated with a greater prevalence of non-alcoholic fatty liver disease (quartile 1, 43.6%; quartile 4, 80.6%; P=0.01); however, in females, there was no significant association between serum homocysteine levels and the prevalence of non-alcoholic fatty liver disease. In the logistic regression model adjusted for age and potential confounding parameters, the odds ratio for men was significantly higher in the uppermost quartile (model 3, quartile 4: odds ratio, 6.78; 95% confidential interval, 1.67 to 27.56); however, serum homocysteine levels in women were not associated with non-alcoholic fatty liver disease in the crude model or in models adjusted for confounders. CONCLUSION: Serum homocysteine levels were associated with the prevalence of non-alcoholic fatty liver disease in men.

18.
Plant Pathol J ; 32(3): 182-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27298593

ABSTRACT

Together with the Fusarium graminearum species complex, F. culmorum is a major member of the causal agents of Fusarium head blight on cereals such as wheat, barley and corn. It causes significant yield and quality losses and results in the contamination of grain with mycotoxins that are harmful to humans and animals. In Korea, F. culmorum is listed as a quarantine fungal species since it has yet to be found in the country. In this paper, we report that two isolates (J1 and J2) of F. culmorum were collected from the air at a rice paddy field in Korea. Species identification was confirmed by phylogenetic analysis using multi-locus sequence data derived from five genes encoding translation elongation factor, histone H3, phosphate permease, a reductase, and an ammonia ligase and by morphological comparison with reference strains. Both diagnostic PCR and chemical analysis confirmed that these F. culmorum isolates had the capacity to produce nivalenol, the trichothecene mycotoxin, in rice substrate. In addition, both isolates were pathogenic on wheat heads and corn stalks. This is the first report on the occurrence of F. culmorum in Korea.

19.
J Clin Endocrinol Metab ; 101(1): 96-102, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26529629

ABSTRACT

CONTEXT: The relationship between bone turnover markers and atherosclerosis is controversial. OBJECTIVE: The purpose of this study was to determine the association of arterial stiffness with the levels of osteocalcin and C-terminal telopeptide of type I collagen (CTx). DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study included 1691 men and 1913 women who participated in the medical examination programs of a hospital from March 2008 to December 2011. MAIN OUTCOME MEASURES: Arterial stiffness was estimated by brachial-ankle pulse wave velocity (baPWV). Osteocalcin and CTx were assayed by chemiluminescence immunoassay. Bone mineral density was measured by dual-energy X-ray absorptiometry. RESULTS: The mean baPWV was elevated at both ends of the osteocalcin quintiles in both men and women. However, the adjusted mean was higher in the lowest quintile of osteocalcin than in the other quintiles in men and women. Before adjustment, negative and positive relationships of baPWV with the levels of osteocalcin and CTx were observed in men (ß = -0.123 and -0.078 for osteocalcin and CTx, respectively) and women (ß = 0.151 and 0.193), respectively. After adjustment for age and metabolic parameters, osteocalcin was negatively related with baPWV at lower osteocalcin levels (Q1-Q2) in both sexes (in the fully adjusted model, ß = -0.090 for men and -0.053 for women). No significant relationship was observed at higher values. The osteocalcin level was fit for a quadratic model for baPWV showing an inverse J-shape. CONCLUSIONS: The level of serum osteocalcin showed an inverse J-shaped relationship with arterial stiffness in both men and women. However, the association between the CTx level and arterial stiffness was not significant.


Subject(s)
Osteocalcin/deficiency , Vascular Stiffness/genetics , Aged , Ankle Brachial Index , Bone Density , Collagen Type I/blood , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Peptides/blood , Pulse Wave Analysis , Republic of Korea/epidemiology , Sex Characteristics
20.
PLoS Genet ; 11(9): e1005486, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26334536

ABSTRACT

Fusarium graminearum, the causal agent of Fusarium head blight in cereal crops, produces sexual progeny (ascospore) as an important overwintering and dissemination strategy for completing the disease cycle. This homothallic ascomycetous species does not require a partner for sexual mating; instead, it carries two opposite mating-type (MAT) loci in a single nucleus to control sexual development. To gain a comprehensive understanding of the regulation of sexual development in F. graminearum, we used in-depth and high-throughput analyses to examine the target genes controlled transcriptionally by two-linked MAT loci (MAT1-1, MAT1-2). We hybridized a genome-wide microarray with total RNAs from F. graminearum mutants that lacked each MAT locus individually or together, and overexpressed MAT1-2-1, as well as their wild-type progenitor, at an early stage of sexual development. A comparison of the gene expression levels revealed a total of 1,245 differentially expressed genes (DEGs) among all of the mutants examined. Among these, genes involved in metabolism, cell wall organization, cellular response to stimuli, cell adhesion, fertilization, development, chromatin silencing, and signal transduction, were significantly enriched. Protein binding microarray analysis revealed the presence of putative core DNA binding sequences (ATTAAT or ATTGTT) for the HMG (high mobility group)-box motif in the MAT1-2-1 protein. Targeted deletion of 106 DEGs revealed 25 genes that were specifically required for sexual development, most of which were regulated transcriptionally by both the MAT1-1 and MAT1-2 loci. Taken together with the expression patterns of key target genes, we propose a regulatory pathway for MAT-mediated sexual development, in which both MAT loci may be activated by several environmental cues via chromatin remodeling and/or signaling pathways, and then control the expression of at least 1,245 target genes during sexual development via regulatory cascades and/or networks involving several downstream transcription factors and a putative RNA interference pathway.


Subject(s)
Edible Grain/microbiology , Fusarium/growth & development , Genes, Fungal , Culture Media , Edible Grain/genetics , Fusarium/genetics , Fusarium/physiology , Gene Expression Regulation, Plant , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...