Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 13(5): 5987-5998, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31083962

ABSTRACT

We have developed an artificially controllable strategy of an electrodeposition process adequate for resistive random-access memory (ReRAM) applications of binary Cu2O. Typically, the precise control of OH- ion concentration (the intermediate supplier of oxygen ions) at the electrode's surface decides the overall reaction rate of the Cu2O. Here, the suggested Pb and Sb metal additives preferentially contribute to the consumption of OH- ions and the supply of OH- ions, respectively, during the Cu2O electrochemical reaction so that the final products are the (200) preferential quadrangular pyramids and the (111) preferential triangular pyramids. Interestingly, the coexistence of Sb/Pb precursors in the Cu electrolytes results in extraordinarily decreased reaction rate from the opposite action of OH- ion utilization as well as intense progressive growth behavior, and the resultant Cu2O films consist of crystallized small-size nanoparticles (NPs) in an amorphous-like matrix. In the case of ReRAM applications, while the polycrystalline film induces irregular device performance and the amorphous layer shows an easily irreparable electrical breakdown, our NP-assembled Cu2O films from Pb/Sb metal ions reveal the formation of a conduction bridge via phase change to a crystalline filament with no need for forming voltage and with superior electrical stability. It is attributed to the coalescence of crystal NPs into large grains during the set/reset cycle process for the heat dissipation of Joule heating. The Cu2O sample prepared with a 3 mM Sb + 3 mM Pb mixture solution exhibits forming-free ReRAM devices with high on/off resistance ratios of 1.2 × 104 and long-term electrical/thermal stability.

2.
ACS Appl Mater Interfaces ; 11(16): 14840-14847, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30938151

ABSTRACT

To date, TiO2 films prepared by atomic layer deposition are widely used to prepare Cu2O nanowire (NW)-based photocathodes with photoelectrochemical (PEC) durability as this approach enables conformal coating and furnishes chemical robustness. However, this common approach requires complicated interlayers and makes the fabrication of photocathodes with reproducible performance and long-term stability difficult. Although sol-gel-based approaches have been well established for coating surfaces with oxide thin films, these techniques have rarely been studied for oxide passivation in PEC applications, because the sol-gel coating methods are strongly influenced by surface chemical bonding and have been mainly demonstrated on flat substrates. As a unique strategy based on solution processing, herein, we suggest a creative solution for two problems encountered in the conformal coating of surfaces with oxide layers: (i) how to effectively prevent corrosion of materials with hydrophilic surfaces by simply using a single TiO2 surface protection layer instead of a complex multilayer structure and (ii) guaranteeing perfect chemical durability. A Cu(OH)2 NW can be easily prepared as an intermediate phase by anodization of a Cu metal, where the former inherently possesses a hydrophilic hydroxylated surface and thus, enables thorough coating with TiO2 precursor solutions. Chemically robust nanowires are then generated as the final product via the phase transformation of Cu(OH)2 to Cu2O via sintering at 600 °C. The coated NWs exhibit excellent PEC properties and a stable performance. Consequently, the perfect chemical isolation of the Cu2O NWs from the electrolyte allows a remarkable PEC operation with the maintenance of the initial photocurrent for more than one day.

3.
J Phys Ther Sci ; 28(3): 870-4, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27134375

ABSTRACT

[Purpose] The present study attempted to measure two-point discrimination in the upper extremities of healthy Koreans in their 20's. [Subjects and Methods] Using a three-point esthesiometer, we conducted an experiment with a group of 256 college students (128 male and 128 female), attending N University in Chonan, Republic of Korea. [Results] Females showed two-point discrimination at a shorter distance than males at the following points: (i) 5 cm above the elbow joint, the middle part, and 5 cm below the shoulder joint of the anterior upper arm; (ii) 5 cm above the elbow joint and 5 cm below the shoulder joint of the posterior upper arm; (iii) 5 cm above the front of the wrist joint of the forearm; 5 cm below the elbow joint, the palmar part of the distal interphalangeal joint of the thumb, the dorsal part of the distal interphalangeal joint of the middle and little fingers. It was also found that females showed greater two-point discrimination than males in distal regions rather than proximal regions. [Conclusion] The findings of this study will help establish normal values for two-point discrimination of upper extremities of young Koreans in their 20's.

SELECTION OF CITATIONS
SEARCH DETAIL
...