Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-477789

ABSTRACT

The widespread SARS-CoV-2 in humans results in the continuous emergence of new variants. Recently emerged Omicron variant with multiple spike mutations sharply increases the risk of breakthrough infection or reinfection, highlighting the urgent need for new vaccines with broad-spectrum antigenic coverage. Using inter-lineage chimera and mutation patch strategies, we engineered a recombinant monomeric spike variant (STFK1628x), which showed high immunogenicity and mutually complementary antigenicity to its prototypic form (STFK). In hamsters, a bivalent vaccine comprised of STFK and STFK1628x elicited high titers of broad-spectrum antibodies to neutralize all 14 circulating SARS-CoV-2 variants, including Omicron; and fully protected vaccinees from intranasal SARS-CoV-2 challenges of either the ancestral strain or immune-evasive Beta variant. Strikingly, the vaccination of hamsters with the bivalent vaccine completely blocked the within-cage virus transmission to unvaccinated sentinels, for either the ancestral SARS-CoV-2 or Beta variant. Thus, our study provides new insights and antigen candidates for developing next-generation COVID-19 vaccines.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-423552

ABSTRACT

A safe and effective SARS-CoV-2 vaccine is essential to avert the on-going COVID-19 pandemic. Here, we developed a subunit vaccine, which is comprised of CHO-expressed spike ectodomain protein (StriFK) and nitrogen bisphosphonates-modified zinc-aluminum hybrid adjuvant (FH002C). This vaccine candidate rapidly elicited the robust humoral response, Th1/Th2 balanced helper CD4 T cell and CD8 T cell immune response in animal models. In mice, hamsters, and non-human primates, 2-shot and 3-shot immunization of StriFK-FH002C generated 28- to 38-fold and 47- to 269-fold higher neutralizing antibody titers than the human COVID-19 convalescent plasmas, respectively. More importantly, the StriFK-FH002C immunization conferred sterilizing immunity to prevent SARS-CoV-2 infection and transmission, which also protected animals from virus-induced weight loss, COVID-19-like symptoms, and pneumonia in hamsters. Vaccine-induced neutralizing and cell-based receptor-blocking antibody titers correlated well with protective efficacy in hamsters, suggesting vaccine-elicited protection is immune-associated. The StriFK-FH002C provided a promising SARS-CoV-2 vaccine candidate for further clinical evaluation.

SELECTION OF CITATIONS
SEARCH DETAIL
...