Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 12(7): 3534-3552, 2022.
Article in English | MEDLINE | ID: mdl-35547771

ABSTRACT

Rationale: Malignant ascites in peritoneal metastases is a lipid-enriched microenvironment and is frequently involved in the poor prognosis of epithelial ovarian cancer (EOC). However, the detailed mechanisms underlying ovarian cancer (OvCa) cells dictating their lipid metabolic activities in promoting tumor progression remain elusive. Methods: The omental conditioned medium (OCM) was established to imitate the omental or ascites microenvironment. Mass spectrometry, RT-qPCR, IHC, and western blot assays were applied to evaluate human fatty acid desaturases expressions and activities. Pharmaceutical inhibition and genetic ablation of SCD1/FADS2 were performed to observe the oncogenic capacities. RNA sequencing, lipid peroxidation, cellular iron, ROS, and Mito-Stress assays were applied to examine ferroptosis. OvCa patient-derived organoid and mouse model of peritoneal metastases were used to evaluate the combined effect of SCD1/FADS2 inhibitors with cisplatin. Results: We found that two critical fatty acid desaturases, stearoyl-CoA desaturase-1 (SCD1) and acyl-CoA 6-desaturase (FADS2), were aberrantly upregulated, accelerating lipid metabolic activities and tumor aggressiveness of ascites-derived OvCa cells. Lipidomic analysis revealed that the elevation of unsaturated fatty acids (UFAs) was positively associated with SCD1/FADS2 levels and the oncogenic capacities of OvCa cells. In contrast, pharmaceutical inhibition and genetic ablation of SCD1/FADS2 retarded tumor growth, cancer stem cell (CSC) formation and reduced platinum resistance. Inhibition of SCD1/FADS2 directly downregulated GPX4 and the GSH/GSSG ratio, causing disruption of the cellular/mitochondrial redox balance and subsequently, iron-mediated lipid peroxidation and mitochondrial dysfunction in ascites-derived OvCa cells. Conclusions: Combinational treatment with SCD1/FADS2 inhibitors and cisplatin synergistically repressed tumor cell dissemination, providing a promising chemotherapeutic strategy against EOC peritoneal metastases.


Subject(s)
Ferroptosis , Ovarian Neoplasms , Peritoneal Neoplasms , Animals , Ascites , Carcinoma, Ovarian Epithelial , Cisplatin/pharmacology , Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acids, Unsaturated , Female , Humans , Iron , Mice , Ovarian Neoplasms/drug therapy , Oxidation-Reduction , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Tumor Microenvironment
2.
Pharmacol Res ; 161: 105157, 2020 11.
Article in English | MEDLINE | ID: mdl-32814169

ABSTRACT

Increasing evidence shows that Traditional Chinese Medicine (TCM) has an obvious appeal for cancer treatment, but there is still a lack of scientific investigation of its underlying molecular mechanisms. Bitter melon or bitter gourd (Momordica charantia) is an edible fruit that is commonly consumed, and it is used to cure different diseases in various ancient folk medical practices. We report that a bioactive protein, MAP30, isolated from bitter melon seeds exhibited potent anticancer and anti-chemoresistant effects on ovarian cancer cells. Functional studies revealed that MAP30 inhibited cancer cell migration, cell invasion, and cell proliferation in various ovarian cancer cells but not normal immortalized ovarian epithelial cells. When administered with cisplatin, MAP30 produced a synergistic effect on cisplatin-induced cell cytotoxicity in ovarian cancer cells. When low doses of cisplatin and MAP30 were co-injected intraperitoneally, a remarkable reduction of tumor dissemination and tumor growth was observed in an ovarian cancer ascites mouse model. Notably, blood tests confirmed that MAP30 did not cause any adverse effects on liver and kidney functions in the treated mice. MAP30 activated AMP-activated protein kinase (AMPK) signaling via CaMKKß and induced cell cycle arrest in the S-phase. MAP30 modulated cell metabolism of ovarian cancer cells via suppression of GLUT-1/-3-mediated glucose uptake, adipogenesis, and lipid droplet formation in tumor development and progression. MAP30 also induced an increase in intracellular Ca2+ ion concentration, which triggered ROS-mediated cancer cell death via apoptosis and ferroptosis. Collectively, these findings suggest that natural MAP30 is a non-toxic supplement that may enhance chemotherapeutic outcomes and benefit ovarian cancer patients with peritoneal metastases.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cisplatin/pharmacology , Energy Metabolism/drug effects , Ferroptosis/drug effects , Momordica charantia , Ovarian Neoplasms/drug therapy , Ribosome Inactivating Proteins, Type 2/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Synergism , Female , Glycolysis/drug effects , Humans , Lipogenesis/drug effects , Mice, Inbred BALB C , Mice, Nude , Momordica charantia/chemistry , Neoplasm Invasiveness , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ribosome Inactivating Proteins, Type 2/isolation & purification , Xenograft Model Antitumor Assays
3.
Oncogene ; 38(4): 564-580, 2019 01.
Article in English | MEDLINE | ID: mdl-30166592

ABSTRACT

Platinum drugs are used in first-line to treat ovarian cancer, but most of the patients eventually generate resistance after treatment with these drugs. Although both c-Myc and EZH2 have been implicated in regulating cisplatin resistance in ovarian cancer, the interplay between these two regulators is poorly understood. Using RNA sequence analysis (RNA-seq), for the first time we find that miR-137 level is extremely low in cisplatin resistant ovarian cancer cells, correlating with higher levels of c-Myc and EZH2 expression. Further analyses indicate that in resistant cells c-Myc enhances the expression of EZH2 by directly suppressing miR-137 that targets EZH2 mRNA, and increased expression of EZH2 activates cellular survival pathways, resulting in the resistance to cisplatin. Inhibition of c-Myc-miR-137-EZH2 pathway re-sensitizes resistant cells to cisplatin. Both in vivo and in vitro analyses indicate that cisplatin treatment activates c-Myc-miR-137-EZH2 pathway. Importantly, elevated c-Myc-miR-137-EZH2 pathway in resistant cells is sustained by dual oxidase maturation factor 1 (DUOXA1)-mediated production of reactive oxygen species (ROS). Significantly, clinical studies further confirm the activated c-Myc-miR-137-EZH2 pathway in platinum drug-resistant or recurrent ovarian cancer patients. Thus, our studies elucidate a novel role of miR-137 in regulating c-Myc-EZH2 axis that is crucial to the regulation of cisplatin resistance in ovarian cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Drug Resistance, Neoplasm/physiology , Enhancer of Zeste Homolog 2 Protein/physiology , MicroRNAs/physiology , Neoplasm Proteins/physiology , Ovarian Neoplasms/drug therapy , Proto-Oncogene Proteins c-myc/physiology , RNA, Neoplasm/physiology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , MicroRNAs/genetics , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Promoter Regions, Genetic , RNA, Neoplasm/genetics , Recombinant Fusion Proteins/metabolism , Sequence Analysis, RNA , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL