Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Planta Med ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749481

ABSTRACT

Derris scandens, which contains isoflavones and prenylated derivatives, has analgesic and anti-inflammatory properties and is an ingredient in traditional Thai medicine for perimenopause and menopause. However, the estrogenic activity of D. scandens has not yet been explored. Therefore, this study aimed to examine the estrogenic activity of the stem extract of D. scandens and its isoflavone derivatives. In this study, we conducted a proliferation assay in MCF-7 cells and qRT-PCR to assess gene expression. We found that the relative cell proliferation of compounds (1 µM) was ranked in the following order as compared to 0.1 nM 17ß-estradiol (100%): genistein (97.84%) > derrisisoflavone A (83.17%) > genistein-7-O-[α-rhamnopyranosyl-(1→6)-glucopyranoside] (GTG) (69.55%) > 6,8-diprenylgenistein (51.91%) > lupalbigenin (18.72%). Furthermore, co-treatment with 1 µM lupalbigenin and 0.1 nM 17ß-estradiol was performed, which decreased cell proliferation to 80.38%. In vitro results suggest that lupalbigenin has an estrogen-antagonistic effect. At a dose of 1 µM, genistein had the strongest efficacy in increasing the expression of human estrogen receptor ß (ERß) by 4.0-fold compared to the control. Furthermore, GTG augmented the gene expression of human estrogen receptor α (ERα) and ERß by 1.5- and 3.4-fold, respectively. Prenylated derivatives of genistein (derrisisoflavone A, 6,8-diprenylgenistein, and lupalbigenin) significantly suppressed the gene expression of human androgen receptor (AR). The administration of crude extract at 10 µg/mL significantly suppressed AR (0.6-fold) and transmembrane protease serine 2 (0.1-fold) expression, but did not significantly affect ERα and ERß gene expression. This herbal medicine may be safe for estrogen-exposed breast cancer patients.

2.
Heliyon ; 10(6): e27875, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545211

ABSTRACT

This study presents an efficient high-performance liquid chromatography with ultraviolet detection (HPLC-UV) method for monitoring valproic acid (VPA) level in human plasma. This method is distinguished by its simplicity, cost-effectiveness, and rapid execution, addressing the limitations associated with other advanced analytical techniques like liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), and immunoassays, which are generally complex and costly for routine application. A challenge in analyzing VPA is its non-linear protein binding profile and the absence of a chromophore in its structure, making direct detection difficult. To overcome this, the study developed an efficient HPLC-UV for VPA determination in human plasma, utilizing a simplified and rapid microwave-assisted derivatization process. Due to the lack of a chromophore in VPA structure, this work developed a microwave-assisted derivatization of VPA using phenylhydrazine hydrochloride (PH HCl). The process optimization was achieved at 450 W for 50 s, facilitating effective HPLC-UV detection. The derivatized product was characterized using 1H nuclear magnetic resonance (NMR) and Fourier transform infrared spectrometer (FT-IR). The derivative, identified as (Z)-N-phenyl-2-propylpentanehydrazonic acid, demonstrated specificity in plasma analysis with no detectable interference. The method exhibited a linear response for VPA concentrations ranging from 30 to 150 µg/mL, with a correlation coefficient exceeding 0.99. Recovery varied between 86.7% and 107%, with a maximum coefficient of variation (CV) of 10.0%. The findings suggest that the microwave-assisted derivatization technique substantially improves the feasibility and cost-effectiveness of HPLC-UV for the analysis of VPA in plasma. This method provides a viable alternative to conventional HPLC methodologies, offering a balance of efficiency and economic practicality for VPA quantification.

3.
BMC Complement Med Ther ; 24(1): 129, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521901

ABSTRACT

BACKGROUND: The potent antiplasmodial activity of 1-hydroxy-5,6,7-trimethoxyxanthone (HTX), isolated from Mammea siamensis T. Anders. flowers, has previously been demonstrated in vitro. However, its in vivo activity has not been reported. Therefore, this study aimed to investigate the antimalarial activity and acute toxicity of HTX in a mouse model and to evaluate the pharmacokinetic profile of HTX following a single intraperitoneal administration. METHODS: The in vivo antimalarial activity of HTX was evaluated using a 4-day suppressive test. Mice were intraperitoneally injected with Plasmodium berghei ANKA strain and given HTX daily for 4 days. To detect acute toxicity, mice received a single dose of HTX and were observed for 14 days. Additionally, the biochemical parameters of the liver and kidney functions as well as the histopathology of liver and kidney tissues were examined. HTX pharmacokinetics after intraperitoneal administration was also investigated in a mouse model. Liquid chromatography triple quadrupole mass spectrometry was used to quantify plasma HTX and calculate pharmacokinetic parameters with the PKSolver software. RESULTS: HTX at 10 mg/kg body weight significantly suppressed parasitemia in malaria-infected mice by 74.26%. Mice treated with 3 mg/kg HTX showed 46.88% suppression, whereas mice treated with 1 mg/kg displayed 34.56% suppression. Additionally, no symptoms of acute toxicity were observed in the HTX-treated groups. There were no significant alterations in the biochemical parameters of the liver and kidney functions and no histological changes in liver or kidney tissues. Following intraperitoneal HTX administration, the pharmacokinetic profile exhibited a maximum concentration (Cmax) of 94.02 ng/mL, time to attain Cmax (Tmax) of 0.5 h, mean resident time of 14.80 h, and elimination half-life of 13.88 h. CONCLUSIONS: HTX has in vivo antimalarial properties against P. berghei infection. Acute toxicity studies of HTX did not show behavioral changes or mortality. The median lethal dose was greater than 50 mg/kg body weight. Pharmacokinetic studies showed that HTX has a long elimination half-life; hence, shortening the duration of malaria treatment may be required to minimize toxicity.


Subject(s)
Antimalarials , Malaria , Mammea , Mice , Animals , Antimalarials/toxicity , Plant Extracts/toxicity , Malaria/drug therapy , Flowers , Body Weight
4.
Phytochem Anal ; 35(3): 483-492, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37965872

ABSTRACT

INTRODUCTION: The stem of the plant species Derris scandens (Roxb.) Benth. (DS) contains genistein-7-O-[α-rhamnopyranosyl-(1→6)]-ß-glucopyranoside (GTG), which is a unique marker. Previous analyses of GTG using antibody-based immunoassays were compromised because of their high cross-reactivity with structurally related compounds of DS, thereby limiting their applicability in DS quality control. OBJECTIVE: Conjugation of GTG with carrier proteins was achieved using the Mannich reaction to produce a highly specific monoclonal antibody (mAb) targeting GTG (anti-GTG mAb). METHODS: The anti-GTG mAb was generated using hybridoma technology and characterised using an indirect competitive enzyme-linked immunosorbent assay (icELISA). Both lateral-flow immunoassay (LFIA) and icELISA were developed to detect and quantify GTG in DS raw materials and associated products. RESULTS: icELISA using the anti-GTG mAb showed 100% specificity for GTG, with only 1.77% cross-reactivity with genistin and less than 0.01% cross-reactivity with other compounds. icELISA demonstrated a linear range for GTG determination between 62.5 and 2000 ng/mL. The limits of detection (LOD) and quantification were 49.68 and 62.50 ng/mL for GTG, respectively. The precision of the analysis ranged from 1.28% to 4.20% for repeatability and from 1.03% to 7.05% for reproducibility. The accuracy of the analysis ranged from 101.97% to 104.01% for GTG recovery. GTG levels determined via icELISA were consistent with those confirmed via high-performance liquid chromatography (HPLC) (R2 = 0.9903). Moreover, the LOD of LFIA for GTG was 500 ng/mL. CONCLUSION: Immunoassays utilising specific anti-GTG mAbs were successfully developed, including LFIA for rapid GTG detection and icELISA for GTG quantification.


Subject(s)
Antibodies, Monoclonal , Derris , Genistein/analysis , Reproducibility of Results , Enzyme-Linked Immunosorbent Assay/methods , Immunoassay
5.
Planta Med ; 90(2): 126-137, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37846500

ABSTRACT

Derris scandens (DS) is widely recognized for its therapeutic properties, specifically its analgesic effects, which significantly alleviate muscle pain. The chemical constituents of DS stem include various isoflavone derivatives. However, there is currently a lack of specified anti-inflammatory chemical markers and analytical methods for quality control. The present study aimed to evaluate the anti-inflammatory activity of DS and its constituents using the RAW 264.7 cell model. The expression of inflammatory genes such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and 5-lipoxygenase (5-LOX) was examined using quantitative RT-PCR. An high-performance liquid chromatography with a UV detection method was developed to quantitatively analyze genistein-7-O-[α-rhamnopyranosyl-(1 → 6)]-ß-glucopyranoside, genistein, derrisisoflavone A, lupalbigenin, and 6,8-diprenylgenistein in DS stem. The developed HPLC-UV method demonstrated high sensitivity with limits of detection and quantification ranging from 0.01 to 0.06 µg/mL and 0.03 to 0.18 µg/mL, respectively. The accuracy of the method ranged from 93.3 to 109.6%. Furthermore, the repeatability and reproducibility of the method were suitable, as indicated by the relative standard deviations of ≤ 3.02% and ≤ 6.22%, respectively. The DS extract notably inhibited NO production, exhibiting effects comparable to those of 500 µM diclofenac, and substantially suppressed the expression of iNOS, COX-2, IL-6, and 5-LOX of lipopolysaccharide (LPS)-induced genes. As to the pure isoflavone derivatives, the order of NO production inhibition was found to be genistein > lupalbigenin > derrisisoflavone A > 6,8-diprenylgenistein > genistein-7-O-[α-rhamnopyranosyl-(1 → 6)]-ß-glucopyranoside. Genistein, derrisisoflavone A, and 6,8-diprenylgenistein significantly suppressed the upregulation of all LPS-induced genes. Consequently, these compounds are recommended as anti-inflammatory markers for the quantitative chemical analysis of DS.


Subject(s)
Derris , Isoflavones , Mice , Animals , Chromatography, High Pressure Liquid , RAW 264.7 Cells , Genistein/pharmacology , Derris/chemistry , Interleukin-6/metabolism , Lipopolysaccharides , Cyclooxygenase 2/metabolism , Reproducibility of Results , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Isoflavones/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism
7.
Phytochem Anal ; 34(6): 632-640, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37254639

ABSTRACT

INTRODUCTION: Miroestrol and deoxymiroestrol are potent phytoestrogens and are oestrogen markers of Pueraria candollei var. mirifica. However, purifying these compounds is difficult because they only exist in trace amounts. OBJECTIVES: Active fragment antigen-binding (Fab) antibodies were produced via Escherichia coli SHuffle® T7 and used to selectively separate these compounds. MATERIALS AND METHODS: Two immunoaffinity separation approaches were developed, namely the immunoaffinity column (IAC) and a cell-based method. Group-specific Fab antibodies against miroestrol and deoxymiroestrol (anti-MD Fab) were used as biological binding reagents for selective separation. RESULTS: The Fab-based IAC effectively separated miroestrol and deoxymiroestrol (0.65 and 2.24 µg per 2 mL of resin, respectively) from P. mirifica root extract. When P. mirifica extract was added to E. coli cultures during Fab expression via a cell-based method, the target compound accumulated in intracellular compartments and, thus, were separated from E. coli cells after the removal of other compounds. A yield of 1.07 µg of miroestrol per gram of cell pellet weight was obtained. Miroestrol and deoxymiroestrol were successfully purified from P. mirifica extract using anti-MD Fab via the IAC and an intracellular cell-based method. CONCLUSION: The proposed methods can simplify the miroestrol and deoxymiroestrol extraction process and provide a basis for applications utilising recombinant antibodies to separate target compounds.


Subject(s)
Pueraria , Pueraria/chemistry , Escherichia coli/genetics , Plant Extracts
8.
Appl Microbiol Biotechnol ; 107(9): 2887-2896, 2023 May.
Article in English | MEDLINE | ID: mdl-36995382

ABSTRACT

Immunoassays are efficient for the phytochemical analysis of various matrices. However, producing an appropriate recombinant antibody for small molecules is challenging, resulting in costly analyses. In this study, we aimed to develop recombinant fragment antigen-binding (Fab) antibodies against miroestrol, a potent phytoestrogen marker of Pueraria candollei. Two expression cassettes of Fab were established for the production of active Fab antibodies using SHuffle® T7 Escherichia coli cells. The orientation of variable fragment heavy chain (VH) and variable fragment light chain (VL) in the expression vector constructs influences the reactivity, stability, and binding specificity of the resultant Fab. Stability testing of antibodies demonstrated that Fab is a more stable form of recombinant antibody than a single-chain variable fragment (ScFv) antibody in all conditions. Based on the obtained Fab, the ELISA specifically detected miroestrol in the range of 39.06-625.00 ng/mL. The intra- and inter-assay precisions were 0.74-2.98% and 6.57-9.76%, respectively. The recovery of authentic miroestrol spiked into samples was 106.70-110.14%, and the limit of detection was 11.07 ng/mL. The results for P. candollei roots and products determined using our developed ELISA with Fab antibody and an ELISA with anti-miroestrol monoclonal antibody (mAb) were consistent (R2 = 0.9758). The developed ELISA can be applied for the quality control of miroestrol derived from P. candollei. Therefore, the appropriate expression platform of Fab resulted in the stable binding specificity of the recombinant antibody and was applicable for immunoassays.Key points• ELISAs with Fab has higher sensitivity than that with ScFv.• Fab is more stable than ScFv.• Fab-based ELISA can be used for miroestrol determination of Pueraria candollei.


Subject(s)
Pueraria , Single-Chain Antibodies , Enzyme-Linked Immunosorbent Assay/methods , Phytoestrogens/analysis , Immunoassay/methods , Single-Chain Antibodies/genetics , Pueraria/chemistry , Escherichia coli/genetics
9.
Phytochem Anal ; 34(4): 421-430, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36950953

ABSTRACT

INTRODUCTION: Miroestrol (Mi) and deoxymiroestrol (Dmi) are trace, yet potent, phytooestrogens found in white Kwao Krua [Pueraria candollei var. mirifica (Airy Shaw & Suvat.) Niyomdham, PM]. However, the analysis of these substances is difficult because of complex matrix effects and their various analogues. In addition, alteration in the cross-reactivity of a gold nanoparticle (AuNP)-based immunochromatographic assay (ICA) resulting from the electrostatic adsorption between antibodies and AuNPs has not yet been evaluated. OBJECTIVES: This study aims to develop, characterise, and validate ICA with a monoclonal antibody exhibiting similar reactivity against Mi and Dmi (MD-mAb). MATERIALS AND METHODS: The ICA performance was validated for cross-reactivity and performance in comparison with those of indirect competitive enzyme-linked immunosorbent assays (icELISAs) with MD-mAb and mAb exhibiting specificity against Mi (Mi-mAb). RESULTS: The ICA showed a limit of detection (LOD) at 1 and 16 µg/mL for Mi and Dmi, respectively. The cross-reactivity of the ICA with Dmi was lower (6.25%) than that observed with the icELISA (120%). Cross-reactivity of ICA against other compounds of the PM was also correlated with those of icELISA; no false-positive/negative results were observed. The repeatability and reproducibility of the ICA were confirmed. The results obtained using ICA in samples of PM are correlated with the concentrations determined through icELISAs. CONCLUSION: An ICA with MD-mAb was constructed and validated. However, direct conjugation via the electrostatic adsorption of mAb-AuNPs was expected to alter the cross-reactivity of ICA, especially that of the analyte analogue Dmi.


Subject(s)
Metal Nanoparticles , Pueraria , Pueraria/chemistry , Gold , Reproducibility of Results , Antibodies, Monoclonal , Immunoassay , Enzyme-Linked Immunosorbent Assay/methods
10.
RSC Adv ; 13(9): 6317-6326, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36825292

ABSTRACT

Extracts of Eurycoma longifolia Jack (EL) and Eurycoma harmandiana Pierre (EH) contain numerous bioactive compounds and varying matrices that are challenging to separate using chromatographic techniques. Herein, micellar liquid chromatography (MLC) was used to analyze canthin-6-one alkaloids contained in these extracts, and the achieved performance was compared with that of a conventional high-performance liquid chromatography (HPLC) method. The optimal mobile phase of MLC corresponded to 15 : 85 (v/v) acetonitrile : water (pH 3) containing 110 mM sodium dodecyl sulfate and 10 mM NaH2PO4. The retention times of canthin-6-one-9-O-ß-d-glucopyranoside, 9-hydroxycanthin-6-one, canthin-6-one, and 9-methoxycanthin-6-one were 4.78/15.42, 17.64/24.11, 32.84/38.27, and 39.04/39.86 min, respectively, in the cases of isocratic MLC and conventional HPLC. In both cases, the analyte resolution exceeded 1.5. The MLC elution behavior of the examined analytes was largely determined by their hydrophobicity and ionization. The sensitivity, precision, accuracy, and per-run acetonitrile consumption of the MLC method were comparable to those of the conventional HPLC method. However, the latter method exhibited higher performance for application to EL and EH samples, particularly those with low analyte concentrations and varying sample matrices. Overall, the analysis of canthin-6-one alkaloids using MLC was limited to trace analytes due to interference by the matrix.

11.
J Nat Prod ; 85(12): 2779-2788, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36399766

ABSTRACT

Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has become a pandemic and public health crisis. SARS-CoV-2 and the seasonal common cold coronavirus (HCoV-OC43) belong to the beta genus of human coronaviruses (HCoVs). In-cell ELISA assays were performed using HCoV-OC43 and SARS-CoV-2 and evaluated the antiviral activity of herbal plants. Eurycoma longifolia (EL) and Eurycoma harmandiana (EH) roots (antipyretic properties) and their constituent quassinoids, especially chaparrinone and eurycomalactone, showed potent anti-HCoV-OC43 and SARS-CoV-2 activities, and the low IC50 values of the mentioned constituents were observed in the range of 0.32-0.51 µM. Eurycomanone and 13ß,21-dihydroeurycomanone may contribute to the antiviral activity of EL, whereas chaparrinone is the major and active antiviral constituent of EH root. The content of quassinoids, ß-carboline, and canthin-6-one alkaloids and the cytotoxicity profile of EL and EH extracts were varied regarding extraction solvents. The boiled water and 50% EtOH extractions of both plants were less toxic than those with 95% EtOH as the extraction solvent. Our research suggests that quassinoids, which come from EL and EH roots and are anti-coronavirus compounds, are potential treatment candidates for COVID-19 and merit further in vivo investigations.


Subject(s)
COVID-19 , Common Cold , Coronavirus OC43, Human , Eurycoma , Quassins , Humans , SARS-CoV-2 , Plants , Antiviral Agents/pharmacology
12.
RSC Adv ; 12(40): 25912-25922, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36199617

ABSTRACT

To diminish chemical waste and improve the delivery of Curcuma longa L. (CL) constituents, microemulsions based on hydrophobic deep eutectic solvents (HDESs) were designed as ready-to-use solvents for CL extraction. The microemulsion (ME) of the ME-23 formulation (HDES/Tween 80 : propylene glycol (1 : 1)/water, 25/70/5) displayed CL extraction yields of 1.69, 3.04, 7.36, and 1.39 wt% of bisdemethoxycurcumin, demethoxycurcumin, curcumin, and aromatic-turmerone, respectively. The ME-23 without CL chemical constituents and ME-23-based CL extract inhibited NO production with an IC50 value of 0.0136 ± 0.0023%v/v and a curcumin IC50 value of 75.2 ± 6.7 nM, respectively, and simultaneously lowered inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß production in lipopolysaccharide-activated murine macrophages. Authentic curcumin in ME-23 possessed superior NO inhibitory activity, which was 103-fold more effective than curcumin prepared in the conventional solvent dimethyl sulfoxide. ME-23 was also capable of delivering curcumin into murine macrophages. After 30 days of storage in HDES and HDES-based ME, curcumin remained more than 90%. ME-23 provides advantages for CL extraction, constituent delivery, and anti-inflammatory functions that can be applied to pharmaceutical and cosmetic products.

13.
Biomolecules ; 12(8)2022 08 01.
Article in English | MEDLINE | ID: mdl-36008958

ABSTRACT

Bioimprinting was performed against ovalbumin (OVA) to confer its binding cavities for kwakhurin (Kwa), an isoflavonoid, produced solely by Pueraria candollei var. mirifica (P. candollei). The characterization of bioimprinted-OVA (biOVA), evaluated by an enzyme-linked immunosorbent assay (ELISA), revealed that it functioned as a specific receptor for Kwa. Using biOVA, two systems, i.e., an indirect competitive ELISA (icELISA) and the even simpler and more rapid competitive enzyme-linked bioimprinted-protein assay (cELBIA), were developed as novel techniques for the quantitative analysis of Kwa in P. candollei and its related products. The two analysis methods were found to have limits of detection (LOD) of 4.0 and 2.5 µg/mL, respectively. The high reliability of the developed icELISA and cELBIA using biOVA was also demonstrated by various validation analyses. Subsequently, bioimprinting was performed using eight other proteins to investigate them as candidate scaffolds for the generation of binding cavities for Kwa. Interestingly, two bioimprinted-IgG monoclonal antibodies (biMAbs) recognized Kwa, but their original binding affinity to hapten was lost. That is, the MAbs obtained a new binding ability to Kwa in exchange for their original binding affinity, raising the possibility that biMAb could be alternatively used as a probe for the quantitative analysis of Kwa as well as biOVA. This is the first report of small molecules recognition by MAbs used as proteins for bioimprinting.


Subject(s)
Isoflavones , Pueraria , Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay/methods , Isoflavones/chemistry , Ovalbumin , Pueraria/chemistry , Reproducibility of Results
14.
Biosci Biotechnol Biochem ; 86(10): 1368-1377, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-35876636

ABSTRACT

Sensitive and specific analysis of isomiroestrol (Iso) is required for the quality control of Pueraria candollei, a herb used to treat menopausal disorders. The anti-isomiroestrol monoclonal antibody (Iso-mAb) exhibits cross-reactivity with miroestrol and deoxymiroestrol, which impacts the analytical results. Here, the active and soluble forms of the single-chain variable fragment (Iso-scFv) and fragment antigen-binding (Iso-Fab) against Iso were expressed using Escherichia coli SHuffle® T7 to alter the binding specificity. The Iso-scFv format exhibited a higher binding activity than the Iso-Fab format. The reactivity of Iso-scFv towards Iso was comparable with that of the parental Iso-mAb. Remarkably, the binding specificity of the scFv structure was improved and cross-reactivity against analogs was reduced from 13.3-21.0% to ˂ 1%. The structure of recombinant antibodies affects the binding characteristics. Therefore, the immunoassays should improve specificity; these findings can be useful in agricultural processes and for quality monitoring of P. candollei-related materials.


Subject(s)
Single-Chain Antibodies , Antibodies, Monoclonal , Cytoplasm , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli/genetics , Oxidation-Reduction , Single-Chain Antibodies/genetics
15.
Food Chem ; 396: 133728, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35870240

ABSTRACT

The extraction of curcuminoids and aromatic (ar)-turmerone from Curcuma longa L. using organic solvents produces chemical waste, and is therefore incompatible with food applications. To address this issue, this study presents the design of hydrophobic deep eutectic solvents (HDESs) and HDES-based microemulsions. Using the response surface methodology (RSM), the optimal extraction conditions were identified as follows: HDES = OA:menthol (1:3.6 M ratio), solid-to-liquid ratio = 10:1 (mg/mL), and extraction duration = 90 min (prediction accuracy ≥ 85 %). Under these conditions, the HDES extraction yields of bisdemethoxycurcumin, demethoxycurcumin, curcumin, and ar-turmerone were 2.49 ± 0.25, 5.61 ± 0.45, 9.40 ± 0.86, and 3.83 ± 0.19 % (w/w, dry basis), respectively, while those obtained using the HDES-based microemulsion were 2.10 ± 0.18, 6.31 ± 0.48, 12.6 ± 1.20, and 2.58 ± 0.19 % (w/w, dry basis), respectively. The HDES and its microemulsions are more effective and environmentally friendly than conventional organic solvents for the extraction of curcuminoids and ar-turmerone, and these solvents are also compatible with food and pharmaceutical formulations.


Subject(s)
Curcuma , Curcumin , Curcuma/chemistry , Curcumin/chemistry , Deep Eutectic Solvents , Diarylheptanoids/chemistry , Ketones , Sesquiterpenes , Solvents/chemistry
16.
Chem Biodivers ; 19(7): e202200121, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35652145

ABSTRACT

Eurycoma longifolia (EL) and Eurycoma harmandiana (EH) are natural medicinal plants belonging to the Simaroubaceae family, and are well-known for their ability to enhance male sexual performance. The present study investigated the phosphodiesterase-5 (PDE-5) inhibitory activity of intact roots of EL and EH. Additionally, canthin-6-one alkaloids, ß-carboline alkaloids, and quassinoids were also screened for PDE-5 inhibitory activity. We developed in vitro root and callus cultures of EL and EH to determine their PDE-5 inhibitory activity. Our results indicated that canthin-6-one alkaloids, which include canthin-6-one-9-O-ß-D-glucopyranoside, 9-methoxycanthin-6-one, canthin-6-one, and 9-hydroxycanthin-6-one, exhibited PDE-5 enzymatic inhibitory activity, with IC50 values of 2.86±0.23, 3.30±1.03, 4.31±0.52, and 4.66±1.13 µM, respectively. The ethanolic extract of the intact roots of EL and EH, and the in vitro root culture of EH had large amounts of canthin-6-one alkaloids (1.50±0.04, 2.12±0.03, and 3.48±0.08 mg/g dry weight, respectively), and showed potent PDE-5 inhibition. Our findings indicate that in vitro root cultures of EH may be used to replace intact plants, and canthin-6-one-9-O-ß-D-glucopyranoside should be further investigated for development as a health supplement.


Subject(s)
Alkaloids , Eurycoma , Alkaloids/pharmacology , Carbolines/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 5 , Indole Alkaloids , Plant Extracts/pharmacology , Plant Roots
17.
RSC Adv ; 12(27): 17443-17453, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35765438

ABSTRACT

Owing to their water insolubility, low stability, and poor absorption, anti-inflammatory curcuminoids (CUN) are difficult to be extracted and delivered to the action site. As a result, therapeutic hydrophobic deep eutectic solvents (HDESs), containing menthol and fatty acids (capric, caprylic, and oleic acids), are being developed for CUN solubilization and delivery. In this study, the anti-inflammatory effects of various combinations of HDESs with CUN and curcumin (CUR) were investigated on RAW264.7 macrophage cells. The results showed that CUN can be solubilized using the HDESs. The HDESs of oleic acid (OLA) : menthol (1 : 2, 1 : 1, and 2 : 1 molar ratios) exhibited anti-inflammatory effects, and OLA : menthol (1 : 1 molar ratio) increased the anti-inflammatory effects of CUR. The cytotoxicity of CUN and CUR was also lowered when combined with some OLA : menthol HDESs. The combination of OLA, menthol, and CUR entirely suppressed NO secretion without significant cytotoxicity. These results clearly indicate the potential of HDESs to solubilize CUN and impart anti-inflammatory properties. Furthermore, these solvents could replace organic solvents for CUN extraction, with the added benefit of being therapeutic, biodegradable, and safe for human consumption.

18.
BMC Complement Med Ther ; 22(1): 83, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35317802

ABSTRACT

BACKGROUND: Paraquat (PQ) has been reported to have a high mortality rate. The major target organ of PQ poisoning is the lungs. The pathogenesis of PQ-induced lung injury involves oxidative stress and inflammation. Unfortunately, there is still no effective antidote for PQ poisoning. We hypothesized that aqueous Thunbergia laurifolia (TL) leaf extract is a possible antidote for PQ-induced lung injury. METHODS: The total phenolic content and caffeic acid content of an aqueous extract of TL leaves were analyzed. Male Wistar rats were randomly divided into four groups (n = 4 per group): the control group (administered normal saline), the PQ group (administered 18 mg/kg body weight (BW) PQ dichloride subcutaneously), the PQ + TL-low-dose (LD) group (administered PQ dichloride subcutaneously and 100 mg/kg BW aqueous TL leaf extract by oral gavage) and the PQ + TL-high-dose (HD) group (administered PQ dichloride subcutaneously and 200 mg/kg BW aqueous TL leaf extract by oral gavage). Malondialdehyde (MDA) levels and lung histopathology were analyzed. In addition, the mRNA expression of NADPH oxidase (NOX), interleukin 1 beta (IL-1ß), and tumor necrosis factor alpha (TNF-α) was assessed using reverse transcription-polymerase chain reaction (RT-PCR), and the protein expression of IL-1ß and TNF-α was analyzed using immunohistochemistry. RESULTS: The total phenolic content of the extract was 20.1 ± 0.39 µg gallic acid equivalents (Eq)/mg extract, and the caffeic acid content was 0.31 ± 0.01 µg/mg. The PQ group showed significantly higher MDA levels and NOX, IL-1ß and TNF-α mRNA expression than the control group. Significant pathological changes, including alveolar edema, diffuse alveolar collapse, hemorrhage, leukocyte infiltration, alveolar septal thickening and vascular congestion, were observed in the PQ group compared with the control group. However, the aqueous TL leaf extract significantly attenuated the PQ-induced increases in MDA levels and NOX, IL-1ß and TNF-α expressions. Moreover, the aqueous TL leaf extract ameliorated PQ-induced lung pathology. CONCLUSION: This study indicates that aqueous TL leaf extract can ameliorate PQ-induced lung pathology by modulating oxidative stress through inhibition of NOX and by regulating inflammation through inhibition of IL-1ß and TNF-α expressions. We suggest that aqueous TL leaf extract can be used as an antidote for PQ-induced lung injury.


Subject(s)
Acanthaceae , Lung Injury , Animals , Inflammation/drug therapy , Lung Injury/drug therapy , Male , Oxidative Stress , Paraquat/toxicity , Plant Extracts/adverse effects , Rats , Rats, Wistar
19.
J Nat Prod ; 85(2): 345-351, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35148094

ABSTRACT

Harringtonine (HT), produced from Cephalotaxus species, is known to exhibit potent antiproliferative activity against myeloid leukemia cells by inhibiting protein synthesis. A previous study using acute promyelocytic leukemia (HL-60) cells raised the possibility that the C-5' methyl group of HT plays an important role in regulating leukemia cell line antiproliferative activity. In order to investigate the effect of hydrocarbon chains at C-5' on the resultant activity, the C-5' methyl group was replaced with various straight- and branched-chain hydrocarbons using the corresponding alcohols, and their antiproliferative activity against HL-60 and HeLa cells was investigated. As a result, 4'-n-heptyl-4'-demethylharringtonine (1f, n-heptyl derivative) showed the most potent cytotoxicity among the HT ester derivatives produced, with IC50 values of 9.4 nM and 0.4 µM for HL-60 and HeLa cells, respectively. Interestingly, the cytotoxicity of derivative 1f against HL-60 and HeLa cells respectively was ∼5 (IC50 = 50.5 nM) and ∼10 times (IC50 = 4.0 µM) those of HT and ∼2 (IC50 = 21.8 nM) and ∼4 times (IC50 = 1.7 µM) more than homoharringtonine (HHT). These results demonstrate the potential of the derivative 1f as a lead compound against leukemia.


Subject(s)
Harringtonines , Leukemia, Promyelocytic, Acute , Esters/pharmacology , HL-60 Cells , Harringtonines/pharmacology , HeLa Cells , Humans
20.
Heliyon ; 7(11): e08498, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34901514

ABSTRACT

Benjakul, a traditional Thai formulation, has been used as a carminative and adaptogenic drug. It consists of five plants, Piper chaba Hunter, Piper sarmentosum Roxb., Piper interruptum Opiz., Plumbago indica Linn., and Zingiber officinale Roscoe, in equal ratios. Some individual herbs present in Benjakul were reported to modulate cytochrome P450 (CYP) enzymes. This study aimed to investigate the effects of Benjakul extract on the activities and mRNA expression levels of hepatic CYP2C11 and CYP3A1 in rats. Adult male rats were orally administered 200, 400, or 600 mg/kg BW Benjakul extract for 28 days. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and creatinine levels were assayed. CYP2C11 and CYP3A1 activities were analyzed using cytochrome P450 assay kits. The mRNA expression of CYP2C11 and CYP3A1 was measured using a quantitative real-time PCR assay. Benjakul treatment significantly increased the serum ALT and BUN levels. At doses of 200, 400, and 600 mg/kg BW, Benjakul treatment increased hepatic CYP3A1 activity and CYP3A1 mRNA expression. CYP2C11 mRNA expression was unchanged by treatment with Benjakul extract; however, treatment with the high and middle doses of Benjakul extract increased CYP2C11 activity. Treament with Benjakul extract induced CYP2C11 and CYP3A1 activity in rats. Concurrent use of Benjakul with conventional drugs should be considered to potentially induce herb-drug interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...