Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
J Med Imaging (Bellingham) ; 11(3): 036001, 2024 May.
Article in English | MEDLINE | ID: mdl-38751729

ABSTRACT

Purpose: Deformable medial modeling is an inverse skeletonization approach to representing anatomy in medical images, which can be used for statistical shape analysis and assessment of patient-specific anatomical features such as locally varying thickness. It involves deforming a pre-defined synthetic skeleton, or template, to anatomical structures of the same class. The lack of software for creating such skeletons has been a limitation to more widespread use of deformable medial modeling. Therefore, the objective of this work is to present an open-source user interface (UI) for the creation of synthetic skeletons for a range of medial modeling applications in medical imaging. Approach: A UI for interactive design of synthetic skeletons was implemented in 3D Slicer, an open-source medical image analysis application. The steps in synthetic skeleton design include importation and skeletonization of a 3D segmentation, followed by interactive 3D point placement and triangulation of the medial surface such that the desired branching configuration of the anatomical structure's medial axis is achieved. Synthetic skeleton design was evaluated in five clinical applications. Compatibility of the synthetic skeletons with open-source software for deformable medial modeling was tested, and representational accuracy of the deformed medial models was evaluated. Results: Three users designed synthetic skeletons of anatomies with various topologies: the placenta, aortic root wall, mitral valve, cardiac ventricles, and the uterus. The skeletons were compatible with skeleton-first and boundary-first software for deformable medial modeling. The fitted medial models achieved good representational accuracy with respect to the 3D segmentations from which the synthetic skeletons were generated. Conclusions: Synthetic skeleton design has been a practical challenge in leveraging deformable medial modeling for new clinical applications. This work demonstrates an open-source UI for user-friendly design of synthetic skeletons for anatomies with a wide range of topologies.

3.
Plast Reconstr Surg ; 153(3): 667-677, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37036329

ABSTRACT

BACKGROUND: Objective assessment of craniofacial surgery outcomes in a pediatric population is challenging because of the complexity of patient presentations, diversity of procedures performed, and rapid craniofacial growth. There is a paucity of robust methods to quantify anatomical measurements by age and objectively compare craniofacial dysmorphology and postoperative outcomes. Here, the authors present data in developing a racially and ethnically sensitive anthropomorphic database, providing plastic and craniofacial surgeons with "normal" three-dimensional anatomical parameters with which to appraise and optimize aesthetic and reconstructive outcomes. METHODS: Patients with normal craniofacial anatomy undergoing head magnetic resonance imaging (MRI) scans from 2008 to 2021 were included in this retrospective study. Images were used to construct composite (template) images with diffeomorphic image registration method using the Advanced Normalization Tools package. Composites were thresholded to generate binary three-dimensional segmentations used for anatomical measurements in Materalise Mimics. RESULTS: High-resolution MRI scans from 130 patients generated 12 composites from an average of 10 MRI sequences each: four 3-year-olds, four 4-year-olds, and four 5-year-olds (two male, two female, two Black, and two White). The average head circumference of 3-, 4-, and 5-year-old composites was 50.3, 51.5, and 51.7 cm, respectively, comparable to normative data published by the World Health Organization. CONCLUSIONS: Application of diffeomorphic registration-based image template algorithm to MRI is effective in creating composite templates to represent "normal" three-dimensional craniofacial and soft-tissue anatomy. Future research will focus on development of automated computational tools to characterize anatomical normality, generation of indices to grade preoperative severity, and quantification of postoperative results to reduce subjectivity bias.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Humans , Child , Male , Female , Child, Preschool , Retrospective Studies , Image Processing, Computer-Assisted/methods , Cephalometry/methods , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods
4.
Alzheimers Dement ; 20(3): 1586-1600, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38050662

ABSTRACT

INTRODUCTION: Variability in relationship of tau-based neurofibrillary tangles (T) and neurodegeneration (N) in Alzheimer's disease (AD) arises from non-specific nature of N, modulated by non-AD co-pathologies, age-related changes, and resilience factors. METHODS: We used regional T-N residual patterns to partition 184 patients within the Alzheimer's continuum into data-driven groups. These were compared with groups from 159 non-AD (amyloid "negative") patients partitioned using cortical thickness, and groups in 98 patients with ante mortem MRI and post mortem tissue for measuring N and T, respectively. We applied the initial T-N residual model to classify 71 patients in an independent cohort into predefined groups. RESULTS: AD groups displayed spatial T-N mismatch patterns resembling neurodegeneration patterns in non-AD groups, similarly associated with non-AD factors and diverging cognitive outcomes. In the autopsy cohort, limbic T-N mismatch correlated with TDP-43 co-pathology. DISCUSSION: T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability in AD.


Subject(s)
Alzheimer Disease , Resilience, Psychological , Humans , Alzheimer Disease/pathology , tau Proteins , Neurofibrillary Tangles/pathology , Magnetic Resonance Imaging , Amyloid beta-Peptides
5.
Front Neurol ; 14: 1245886, 2023.
Article in English | MEDLINE | ID: mdl-37900607

ABSTRACT

Frontotemporal dementia (FTD) is a spectrum of clinically and pathologically heterogenous neurodegenerative dementias. Clinical and anatomical variants of FTD have been described and associated with underlying frontotemporal lobar degeneration (FTLD) pathology, including tauopathies (FTLD-tau) or TDP-43 proteinopathies (FTLD-TDP). FTD patients with predominant degeneration of anterior temporal cortices often develop a language disorder of semantic knowledge loss and/or a social disorder often characterized by compulsive rituals and belief systems corresponding to predominant left or right hemisphere involvement, respectively. The neural substrates of these complex social disorders remain unclear. Here, we present a comparative imaging and postmortem study of two patients, one with FTLD-TDP (subtype C) and one with FTLD-tau (subtype Pick disease), who both developed new rigid belief systems. The FTLD-TDP patient developed a complex set of values centered on positivity and associated with specific physical and behavioral features of pigs, while the FTLD-tau patient developed compulsive, goal-directed behaviors related to general themes of positivity and spirituality. Neuroimaging showed left-predominant temporal atrophy in the FTLD-TDP patient and right-predominant frontotemporal atrophy in the FTLD-tau patient. Consistent with antemortem cortical atrophy, histopathologic examinations revealed severe loss of neurons and myelin predominantly in the anterior temporal lobes of both patients, but the FTLD-tau patient showed more bilateral, dorsolateral involvement featuring greater pathology and loss of projection neurons and deep white matter. These findings highlight that the regions within and connected to anterior temporal lobes may have differential vulnerability to distinct FTLD proteinopathies and serve important roles in human belief systems.

6.
Brain Commun ; 5(5): fcad245, 2023.
Article in English | MEDLINE | ID: mdl-37767219

ABSTRACT

Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighbourhood-the Anterior-Temporal and Posterior-Medial brain networks-in normal agers, individuals with preclinical Alzheimer's disease and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbours in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (i) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (ii) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and (iii) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging versus Alzheimer's disease.

7.
ArXiv ; 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37090239

ABSTRACT

Longitudinal assessment of brain atrophy, particularly in the hippocampus, is a well-studied biomarker for neurodegenerative diseases, such as Alzheimer's disease (AD). In clinical trials, estimation of brain progressive rates can be applied to track therapeutic efficacy of disease modifying treatments. However, most state-of-the-art measurements calculate changes directly by segmentation and/or deformable registration of MRI images, and may misreport head motion or MRI artifacts as neurodegeneration, impacting their accuracy. In our previous study, we developed a deep learning method DeepAtrophy that uses a convolutional neural network to quantify differences between longitudinal MRI scan pairs that are associated with time. DeepAtrophy has high accuracy in inferring temporal information from longitudinal MRI scans, such as temporal order or relative inter-scan interval. DeepAtrophy also provides an overall atrophy score that was shown to perform well as a potential biomarker of disease progression and treatment efficacy. However, DeepAtrophy is not interpretable, and it is unclear what changes in the MRI contribute to progression measurements. In this paper, we propose Regional Deep Atrophy (RDA), which combines the temporal inference approach from DeepAtrophy with a deformable registration neural network and attention mechanism that highlights regions in the MRI image where longitudinal changes are contributing to temporal inference. RDA has similar prediction accuracy as DeepAtrophy, but its additional interpretability makes it more acceptable for use in clinical settings, and may lead to more sensitive biomarkers for disease monitoring in clinical trials of early AD.

8.
Alzheimers Res Ther ; 15(1): 79, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041649

ABSTRACT

BACKGROUND: Crucial to the success of clinical trials targeting early Alzheimer's disease (AD) is recruiting participants who are more likely to progress over the course of the trials. We hypothesize that a combination of plasma and structural MRI biomarkers, which are less costly and non-invasive, is predictive of longitudinal progression measured by atrophy and cognitive decline in early AD, providing a practical alternative to PET or cerebrospinal fluid biomarkers. METHODS: Longitudinal T1-weighted MRI, cognitive (memory-related test scores and clinical dementia rating scale), and plasma measurements of 245 cognitively normal (CN) and 361 mild cognitive impairment (MCI) patients from ADNI were included. Subjects were further divided into ß-amyloid positive/negative (Aß+/Aß-)] subgroups. Baseline plasma (p-tau181 and neurofilament light chain) and MRI-based structural medial temporal lobe subregional measurements and their association with longitudinal measures of atrophy and cognitive decline were tested using stepwise linear mixed effect modeling in CN and MCI, as well as separately in the Aß+/Aß- subgroups. Receiver operating characteristic (ROC) analyses were performed to investigate the discriminative power of each model in separating fast and slow progressors (first and last terciles) of each longitudinal measurement. RESULTS: A total of 245 CN (35.0% Aß+) and 361 MCI (53.2% Aß+) participants were included. In the CN and MCI groups, both baseline plasma and structural MRI biomarkers were included in most models. These relationships were maintained when limited to the Aß+ and Aß- subgroups, including Aß- CN (normal aging). ROC analyses demonstrated reliable discriminative power in identifying fast from slow progressors in MCI [area under the curve (AUC): 0.78-0.93] and more modestly in CN (0.65-0.73). CONCLUSIONS: The present data support the notion that plasma and MRI biomarkers, which are relatively easy to obtain, provide a prediction for the rate of future cognitive and neurodegenerative progression that may be particularly useful in clinical trial stratification and prognosis. Additionally, the effect in Aß- CN indicates the potential use of these biomarkers in predicting a normal age-related decline.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Magnetic Resonance Imaging , Cognitive Dysfunction/cerebrospinal fluid , Atrophy
9.
medRxiv ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824762

ABSTRACT

Variability in the relationship of tau-based neurofibrillary tangles (T) and degree of neurodegeneration (N) in Alzheimer's Disease (AD) is likely attributable to the non-specific nature of N, which is also modulated by such factors as other co-pathologies, age-related changes, and developmental differences. We studied this variability by partitioning patients within the Alzheimer's continuum into data-driven groups based on their regional T-N dissociation, which reflects the residuals after the effect of tau pathology is "removed". We found six groups displaying distinct spatial T-N mismatch and thickness patterns despite similar tau burden. Their T-N patterns resembled the neurodegeneration patterns of non-AD groups partitioned on the basis of z-scores of cortical thickness alone and were similarly associated with surrogates of non-AD factors. In an additional sample of individuals with antemortem imaging and autopsy, T-N mismatch was associated with TDP-43 co-pathology. Finally, T-N mismatch training was then applied to a separate cohort to determine the ability to classify individual patients within these groups. These findings suggest that T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability to Alzheimer's disease.

10.
medRxiv ; 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36711782

ABSTRACT

Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighborhood - the Anterior-Temporal and Posterior-Medial brain networks - in normal agers, individuals with preclinical Alzheimer's disease, and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbors in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (1) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (2) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and, (3) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging vs. Alzheimer's disease.

11.
Med Image Anal ; 83: 102683, 2023 01.
Article in English | MEDLINE | ID: mdl-36379194

ABSTRACT

Deep convolutional neural networks (DCNN) achieve very high accuracy in segmenting various anatomical structures in medical images but often suffer from relatively poor generalizability. Multi-atlas segmentation (MAS), while less accurate than DCNN in many applications, tends to generalize well to unseen datasets with different characteristics from the training dataset. Several groups have attempted to integrate the power of DCNN to learn complex data representations and the robustness of MAS to changes in image characteristics. However, these studies primarily focused on replacing individual components of MAS with DCNN models and reported marginal improvements in accuracy. In this study we describe and evaluate a 3D end-to-end hybrid MAS and DCNN segmentation pipeline, called Deep Label Fusion (DLF). The DLF pipeline consists of two main components with learnable weights, including a weighted voting subnet that mimics the MAS algorithm and a fine-tuning subnet that corrects residual segmentation errors to improve final segmentation accuracy. We evaluate DLF on five datasets that represent a diversity of anatomical structures (medial temporal lobe subregions and lumbar vertebrae) and imaging modalities (multi-modality, multi-field-strength MRI and Computational Tomography). These experiments show that DLF achieves comparable segmentation accuracy to nnU-Net (Isensee et al., 2020), the state-of-the-art DCNN pipeline, when evaluated on a dataset with similar characteristics to the training datasets, while outperforming nnU-Net on tasks that involve generalization to datasets with different characteristics (different MRI field strength or different patient population). DLF is also shown to consistently improve upon conventional MAS methods. In addition, a modality augmentation strategy tailored for multimodal imaging is proposed and demonstrated to be beneficial in improving the segmentation accuracy of learning-based methods, including DLF and DCNN, in missing data scenarios in test time as well as increasing the interpretability of the contribution of each individual modality.


Subject(s)
Diagnostic Imaging , Image Processing, Computer-Assisted , Neural Networks, Computer , Humans
12.
Alzheimers Dement ; 19(6): 2355-2364, 2023 06.
Article in English | MEDLINE | ID: mdl-36464907

ABSTRACT

INTRODUCTION: Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods. METHODS: Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere. RESULTS: Partial Spearman correlation of phosphorylated tau and cortical thickness with TAR DNA-binding protein 43 (TDP-43) and α-synuclein scores, age, sex, and postmortem interval as covariates showed significant relationships in entorhinal and primary visual cortices, temporal pole, and insular and posterior cingulate gyri. Linear models including Braak stages, TDP-43 and α-synuclein scores, age, sex, and postmortem interval showed significant correlation between Braak stage and thickness in the parahippocampal gyrus, entorhinal cortex, and Broadman area 35. CONCLUSION: We demonstrated an association of measures of AD pathology with tissue loss in several AD regions despite a limited range of pathology in these cases. HIGHLIGHTS: Neurodegenerative disorders are associated with co-occurring pathologies that cannot be measured specifically with in vivo methods. Identification of the topographic patterns of these pathologies in structural magnetic resonance imaging (MRI) may provide probabilistic biomarkers. We demonstrated the correlation of the specific patterns of tissue loss from ex vivo brain MRI with underlying pathologies detected in postmortem brain hemispheres in patients with Alzheimer's disease (AD) spectrum disorders. The results provide insight into the interpretation of in vivo structural MRI studies in patients with AD spectrum disorders.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism , Neurodegenerative Diseases/complications , Magnetic Resonance Imaging , DNA-Binding Proteins
13.
J Alzheimers Dis ; 89(2): 641-658, 2022.
Article in English | MEDLINE | ID: mdl-35938245

ABSTRACT

BACKGROUND: An understudied variant of Alzheimer's disease (AD), the behavioral/dysexecutive variant of AD (bvAD), is associated with progressive personality, behavior, and/or executive dysfunction and frontal atrophy. OBJECTIVE: This study characterizes the neuropsychological and neuroanatomical features associated with bvAD by comparing it to behavioral variant frontotemporal dementia (bvFTD), amnestic AD (aAD), and subjects with normal cognition. METHODS: Subjects included 16 bvAD, 67 bvFTD, 18 aAD patients, and 26 healthy controls. Neuropsychological assessment and MRI data were compared between these groups. RESULTS: Compared to bvFTD, bvAD showed more significant visuospatial impairments (Rey Figure copy and recall), more irritability (Neuropsychological Inventory), and equivalent verbal memory (Philadelphia Verbal Learning Test). Compared to aAD, bvAD indicated more executive dysfunction (F-letter fluency) and better visuospatial performance. Neuroimaging analysis found that bvAD showed cortical thinning relative to bvFTD posteriorly in left temporal-occipital regions; bvFTD had cortical thinning relative to bvAD in left inferior frontal cortex. bvAD had cortical thinning relative to aAD in prefrontal and anterior temporal regions. All patient groups had lower volumes than controls in both anterior and posterior hippocampus. However, bvAD patients had higher average volume than aAD patients in posterior hippocampus and higher volume than bvFTD patients in anterior hippocampus after adjustment for age and intracranial volume. CONCLUSION: Findings demonstrated that underlying pathology mediates disease presentation in bvAD and bvFTD.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Alzheimer Disease/pathology , Cerebral Cortical Thinning , Cognition , Frontotemporal Dementia/complications , Humans , Magnetic Resonance Imaging , Neuropsychological Tests
14.
Med Image Anal ; 80: 102513, 2022 08.
Article in English | MEDLINE | ID: mdl-35772323

ABSTRACT

There is an urgent unmet need to develop a fully-automated image-based left ventricle mitral valve analysis tool to support surgical decision making for ischemic mitral regurgitation patients. This requires an automated tool for segmentation and modeling of the left ventricle and mitral valve from immediate pre-operative 3D transesophageal echocardiography. Previous works have presented methods for semi-automatically segmenting and modeling the mitral valve, but do not include the left ventricle and do not avoid self-intersection of the mitral valve leaflets during shape modeling. In this study, we develop and validate a fully automated algorithm for segmentation and shape modeling of the left ventricular mitral valve complex from pre-operative 3D transesophageal echocardiography. We performed a 3-fold nested cross validation study on two datasets from separate institutions to evaluate automated segmentations generated by nnU-net with the expert manual segmentation which yielded average overall Dice scores of 0.82±0.03 (set A), 0.87±0.08 (set B) respectively. A deformable medial template was subsequently fitted to the segmentation to generate shape models. Comparison of shape models to the manual and automatically generated segmentations resulted in an average Dice score of 0.93-0.94 and 0.75-0.81 for the left ventricle and mitral valve, respectively. This is a substantial step towards automatically analyzing the left ventricle mitral valve complex in the operating room.


Subject(s)
Echocardiography, Three-Dimensional , Mitral Valve Insufficiency , Echocardiography, Three-Dimensional/methods , Echocardiography, Transesophageal/methods , Heart Ventricles/diagnostic imaging , Humans , Mitral Valve/diagnostic imaging , Mitral Valve Insufficiency/diagnostic imaging , Mitral Valve Insufficiency/surgery
15.
Nat Commun ; 13(1): 1495, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35314672

ABSTRACT

Alzheimer's disease (AD) is defined by amyloid (A) and tau (T) pathologies, with T better correlated to neurodegeneration (N). However, T and N have complex regional relationships in part related to non-AD factors that influence N. With machine learning, we assessed heterogeneity in 18F-flortaucipir vs. 18F-fluorodeoxyglucose positron emission tomography as markers of T and neuronal hypometabolism (NM) in 289 symptomatic patients from the Alzheimer's Disease Neuroimaging Initiative. We identified six T/NM clusters with differing limbic and cortical patterns. The canonical group was defined as the T/NM pattern with lowest regression residuals. Groups resilient to T had less hypometabolism than expected relative to T and displayed better cognition than the canonical group. Groups susceptible to T had more hypometabolism than expected given T and exhibited worse cognitive decline, with imaging and clinical measures concordant with non-AD copathologies. Together, T/NM mismatch reveals distinct imaging signatures with pathobiological and prognostic implications for AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Amyloid beta-Peptides , Biomarkers , Brain/diagnostic imaging , Brain/metabolism , Humans , Magnetic Resonance Imaging , Neuroimaging/methods , Positron-Emission Tomography/methods , tau Proteins/metabolism
16.
J Neurosci ; 42(10): 2131-2141, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35086906

ABSTRACT

The medial temporal lobe (MTL) is connected to the rest of the brain through two main networks: the anterior-temporal (AT) and the posterior-medial (PM) systems. Given the crucial role of the MTL and networks in the physiopathology of Alzheimer's disease (AD), the present study aimed at (1) investigating whether MTL atrophy propagates specifically within the AT and PM networks, and (2) evaluating the vulnerability of these networks to AD proteinopathies. To do that, we used neuroimaging data acquired in human male and female in three distinct cohorts: (1) resting-state functional MRI (rs-fMRI) from the aging brain cohort (ABC) to define the AT and PM networks (n = 68); (2) longitudinal structural MRI from Alzheimer's disease neuroimaging initiative (ADNI)GO/2 to highlight structural covariance patterns (n = 349); and (3) positron emission tomography (PET) data from ADNI3 to evaluate the networks' vulnerability to amyloid and tau (n = 186). Our results suggest that the atrophy of distinct MTL subregions propagates within the AT and PM networks in a dissociable manner. Brodmann area (BA)35 structurally covaried within the AT network while the parahippocampal cortex (PHC) covaried within the PM network. In addition, these networks are differentially associated with relative tau and amyloid burden, with higher tau levels in AT than in PM and higher amyloid levels in PM than in AT. Our results also suggest differences in the relative burden of tau species. The current results provide further support for the notion that two distinct MTL networks display differential alterations in the context of AD. These findings have important implications for disease spread and the cognitive manifestations of AD.SIGNIFICANCE STATEMENT The current study provides further support for the notion that two distinct medial temporal lobe (MTL) networks, i.e., anterior-temporal (AT) and the posterior-medial (PM), display differential alterations in the context of Alzheimer's disease (AD). Importantly, neurodegeneration appears to occur within these networks in a dissociable manner marked by their covariance patterns. In addition, the AT and PM networks are also differentially associated with relative tau and amyloid burden, and perhaps differences in the relative burden of tau species [e.g., neurofibriliary tangles (NFTs) vs tau in neuritic plaques]. These findings, in the context of a growing literature consistent with the present results, have important implications for disease spread and the cognitive manifestations of AD in light of the differential cognitive processes ascribed to them.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/pathology , Amyloid , Amyloid beta-Peptides/metabolism , Atrophy/pathology , Cognitive Dysfunction/pathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Positron-Emission Tomography/methods , Temporal Lobe/metabolism , tau Proteins/metabolism
17.
Acad Radiol ; 29 Suppl 3: S98-S106, 2022 03.
Article in English | MEDLINE | ID: mdl-33903011

ABSTRACT

RATIONALE AND OBJECTIVES: Solid-state MRI has been shown to provide a radiation-free alternative imaging strategy to CT. However, manual image segmentation to produce bone-selective MR-based 3D renderings is time and labor intensive, thereby acting as a bottleneck in clinical practice. The objective of this study was to evaluate an automatic multi-atlas segmentation pipeline for use on cranial vault images entirely circumventing prior manual intervention, and to assess concordance of craniometric measurements between pipeline produced MRI and CT-based 3D skull renderings. MATERIALS AND METHODS: Dual-RF, dual-echo, 3D UTE pulse sequence MR data were obtained at 3T on 30 healthy subjects along with low-dose CT images between December 2018 to January 2020 for this prospective study. The four-point MRI datasets (two RF pulse widths and two echo times) were combined to produce bone-specific images. CT images were thresholded and manually corrected to segment the cranial vault. CT images were then rigidly registered to MRI using mutual information. The corresponding cranial vault segmentations were then transformed to MRI. The "ground truth" segmentations served as reference for the MR images. Subsequently, an automated multi-atlas pipeline was used to segment the bone-selective images. To compare manually and automatically segmented MR images, the Dice similarity coefficient (DSC) and Hausdorff distance (HD) were computed, and craniometric measurements between CT and automated-pipeline MRI-based segmentations were examined via Lin's concordance coefficient (LCC). RESULTS: Automated segmentation reduced the need for an expert to obtain segmentation. Average DSC was 90.86 ± 1.94%, and average 95th percentile HD was 1.65 ± 0.44 mm between ground truth and automated segmentations. MR-based measurements differed from CT-based measurements by 0.73-1.2 mm on key craniometric measurements. LCC for distances between CT and MR-based landmarks were vertex-basion: 0.906, left-right frontozygomatic suture: 0.780, and glabella-opisthocranium: 0.956 for the three measurements. CONCLUSION: Good agreement between CT and automated MR-based 3D cranial vault renderings has been achieved, thereby eliminating the laborious manual segmentation process. Target applications comprise craniofacial surgery as well as imaging of traumatic injuries and masses involving both bone and soft tissue.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Cephalometry , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Prospective Studies , Skull/diagnostic imaging
18.
Neurobiol Aging ; 109: 135-144, 2022 01.
Article in English | MEDLINE | ID: mdl-34740075

ABSTRACT

Hippocampal atrophy is endemic in 'normal aging' but it is unclear what factors drive age-related changes in medial temporal lobe (MTL) structural measures. We investigated cross-sectional (n = 191) and longitudinal (n = 164) MTL atrophy patterns in cognitively normal older adults from ADNI-GO/2 with no to low cerebral ß-amyloid and assessed whether white matter hyperintensities (WMHs) and cerebrospinal fluid (CSF) phospho tau (p-tau) levels can explain age-related changes in the MTL. Age was significantly associated with hippocampal volumes and Brodmann Area (BA) 35 thickness, regions affected early by neurofibrillary tangle pathology, in the cross-sectional analysis and with anterior and/or posterior hippocampus, entorhinal cortex and BA35 in the longitudinal analysis. CSF p-tau was significantly associated with hippocampal volumes and atrophy rates. Mediation analyses showed that CSF p-tau levels partially mediated age effects on hippocampal atrophy rates. No significant associations were observed for WMHs. These findings point toward a role of tau pathology, potentially reflecting Primary Age-Related Tauopathy, in age-related MTL structural changes and suggests a potential role for tau-targeted interventions in age-associated neurodegeneration and memory decline.


Subject(s)
Aging/pathology , Aging/psychology , Cognition , Tauopathies/diagnosis , Tauopathies/pathology , Temporal Lobe/pathology , Aged , Aged, 80 and over , Aging/metabolism , Atrophy , Biomarkers/cerebrospinal fluid , Cross-Sectional Studies , Female , Hippocampus/pathology , Humans , Longitudinal Studies , Male , Middle Aged , Organ Size , tau Proteins/cerebrospinal fluid
19.
Acta Neuropathol Commun ; 9(1): 173, 2021 10 24.
Article in English | MEDLINE | ID: mdl-34689831

ABSTRACT

Tau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer's disease (AD). To elucidate patterns of structural change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known history of neurological disease. Ex vivo MRI scans were combined using a customized groupwise diffeomorphic registration approach to construct a 3D probabilistic atlas that captures the anatomical variability of the MTL. Using serial histology imaging in eleven specimens, we labelled the MTL subregions in the atlas based on cytoarchitecture. Leveraging the atlas and neuropathological ratings of tau and TAR DNA-binding protein 43 (TDP-43) pathology severity, morphometric analysis was performed to correlate regional MTL thickness with the severity of tau pathology, after correcting for age and TDP-43 pathology. We found significant correlations between tau pathology and thickness in the entorhinal cortex (ERC) and stratum radiatum lacunosum moleculare (SRLM). When focusing on cases with low levels of TDP-43 pathology, we found strong associations between tau pathology and thickness in the ERC, SRLM and the subiculum/cornu ammonis 1 (CA1) subfields of the hippocampus, consistent with early Braak stages.


Subject(s)
Imaging, Three-Dimensional/methods , Neurofibrillary Tangles/pathology , Neuroimaging/methods , Temporal Lobe/diagnostic imaging , Adult , Aged , Aged, 80 and over , Atlases as Topic , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Temporal Lobe/pathology , tau Proteins
20.
Ann Neurol ; 90(5): 751-762, 2021 11.
Article in English | MEDLINE | ID: mdl-34617306

ABSTRACT

OBJECTIVE: Tau neurofibrillary tangles (T) are the primary driver of downstream neurodegeneration (N) and subsequent cognitive impairment in Alzheimer's disease (AD). However, there is substantial variability in the T-N relationship - manifested in higher or lower atrophy than expected for level of tau in a given brain region. The goal of this study was to determine if region-based quantitation of this variability allows for identification of underlying modulatory factors, including polypathology. METHODS: Cortical thickness (N) and 18 F-Flortaucipir SUVR (T) were computed in 104 gray matter regions from a cohort of cognitively-impaired, amyloid-positive (A+) individuals. Region-specific residuals from a robust linear fit between SUVR and cortical thickness were computed as a surrogate for T-N mismatch. A summary T-N mismatch metric defined using residuals were correlated with demographic and imaging-based modulatory factors, and to partition the cohort into data-driven subgroups. RESULTS: The summary T-N mismatch metric correlated with underlying factors such as age and burden of white matter hyperintensity lesions. Data-driven subgroups based on clustering of residuals appear to represent different biologically relevant phenotypes, with groups showing distinct spatial patterns of higher or lower atrophy than expected. INTERPRETATION: These data support the notion that a measure of deviation from a normative relationship between tau burden and neurodegeneration across brain regions in individuals on the AD continuum captures variability due to multiple underlying factors, and can reveal phenotypes, which if validated, may help identify possible contributors to neurodegeneration in addition to tau, which may ultimately be useful for cohort selection in clinical trials. ANN NEUROL 2021;90:751-762.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , tau Proteins/metabolism , Aged , Aged, 80 and over , Amyloid beta-Peptides/metabolism , Atrophy/pathology , Cognitive Dysfunction/metabolism , Humans , Male , Neurofibrillary Tangles/pathology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...