Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mol Neurobiol ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38079108

ABSTRACT

Environmental deprivation can have deleterious effects on adaptive myelination and oligodendroglia function. Early stage Huntington disease (HD) is characterised by white-matter myelin abnormalities in both humans and animal models. However, whether deprived environments exacerbate myelin-related pathological features of HD is not clearly understood. Here, we investigated the impact of deprivation and social isolation on ultrastructural features of myelin in the corpus callosum of the YAC128 mouse model of HD and wildtype (WT) mice using transmission electron microscopy. HD pathology on its own leads to increased representation of altered myelin features, such as thinner sheaths and compromised morphology. Interestingly, deprivation mirrors these effects in WT mice but does not greatly exacerbate the already aberrant myelin in HD mice, indicating a disease-related floor effect in the latter animals. These novel findings indicate that environmental deprivation causes abnormalities in myelin ultrastructure in the otherwise healthy corpus callosum of wild-type mice but has distinct effects on HD mice, where compromised myelin integrity is manifest from early stages of the disease.

2.
EBioMedicine ; 94: 104720, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37481821

ABSTRACT

BACKGROUND: In Huntington's disease (HD), a CAG repeat expansion mutation in the Huntingtin (HTT) gene drives a gain-of-function toxicity that disrupts mRNA processing. Although dysregulation of gene splicing has been shown in human HD post-mortem brain tissue, post-mortem analyses are likely confounded by cell type composition changes in late-stage HD, limiting the ability to identify dysregulation related to early pathogenesis. METHODS: To investigate gene splicing changes in early HD, we performed alternative splicing analyses coupled with a proteogenomics approach to identify early CAG length-associated splicing changes in an established isogenic HD cell model. FINDINGS: We report widespread neuronal differentiation stage- and CAG length-dependent splicing changes, and find an enrichment of RNA processing, neuronal function, and epigenetic modification-related genes with mutant HTT-associated splicing. When integrated with a proteomics dataset, we identified several of these differential splicing events at the protein level. By comparing with human post-mortem and mouse model data, we identified common patterns of altered splicing from embryonic stem cells through to post-mortem striatal tissue. INTERPRETATION: We show that widespread splicing dysregulation in HD occurs in an early cell model of neuronal development. Importantly, we observe HD-associated splicing changes in our HD cell model that were also identified in human HD striatum and mouse model HD striatum, suggesting that splicing-associated pathogenesis possibly occurs early in neuronal development and persists to later stages of disease. Together, our results highlight splicing dysregulation in HD which may lead to disrupted neuronal function and neuropathology. FUNDING: This research is supported by the Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Nanyang Assistant Professorship Start-Up Grant, the Singapore Ministry of Education under its Singapore Ministry of Education Academic Research Fund Tier 1 (RG23/22), the BC Children's Hospital Research Institute Investigator Grant Award (IGAP), and a Scholar Award from the Michael Smith Health Research BC.


Subject(s)
Huntington Disease , Mice , Animals , Child , Humans , Huntington Disease/metabolism , RNA Splicing/genetics , Alternative Splicing , Mutation , RNA, Messenger/metabolism , Huntingtin Protein/genetics
3.
Brain Pathol ; 32(5): e13064, 2022 09.
Article in English | MEDLINE | ID: mdl-35285112

ABSTRACT

Ermin is an actin-binding protein found almost exclusively in the central nervous system (CNS) as a component of myelin sheaths. Although Ermin has been predicted to play a role in the formation and stability of myelin sheaths, this has not been directly examined in vivo. Here, we show that Ermin is essential for myelin sheath integrity and normal saltatory conduction. Loss of Ermin in mice caused de-compacted and fragmented myelin sheaths and led to slower conduction along with progressive neurological deficits. RNA sequencing of the corpus callosum, the largest white matter structure in the CNS, pointed to inflammatory activation in aged Ermin-deficient mice, which was corroborated by increased levels of microgliosis and astrogliosis. The inflammatory milieu and myelin abnormalities were further associated with increased susceptibility to immune-mediated demyelination insult in Ermin knockout mice. Supporting a possible role of Ermin deficiency in inflammatory white matter disorders, a rare inactivating mutation in the ERMN gene was identified in multiple sclerosis patients. Our findings demonstrate a critical role for Ermin in maintaining myelin integrity. Given its near-exclusive expression in myelinating oligodendrocytes, Ermin deficiency represents a compelling "inside-out" model of inflammatory dysmyelination and may offer a new paradigm for the development of myelin stability-targeted therapies.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Animals , Central Nervous System/metabolism , Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Mice , Multiple Sclerosis/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism
4.
J Huntingtons Dis ; 10(3): 377-384, 2021.
Article in English | MEDLINE | ID: mdl-34366364

ABSTRACT

BACKGROUND: The relative contribution of grey matter (GM) and white matter (WM) degeneration to the progressive brain atrophy in Huntington's disease (HD) has been well studied. The pathology of the spinal cord in HD is comparatively less well documented. OBJECTIVE: We aim to characterize spinal cord WM abnormalities in a mouse model of HD and evaluate whether selective removal of mutant huntingtin (mHTT) from oligodendroglia rescues these deficits. METHODS: Histological assessments were used to determine the area of GM and WM in the spinal cord of 12-month-old BACHD mice, while electron microscopy was used to analyze myelin fibers in the cervical area of the spinal cord. To investigate the impact of inactivation of mHTT in oligodendroglia on these measures, we used the previously described BACHDxNG2Cre mouse line where mHTT is specifically reduced in oligodendrocyte progenitor cells. RESULTS: We show that spinal GM and WM areas are significantly atrophied in HD mice compared to wild-type controls. We further demonstrate that specific reduction of mHTT in oligodendroglial cells rescues the atrophy of spinal cord WM, but not GM, observed in HD mice. Inactivation of mHTT in oligodendroglia had no effect on the density of oligodendroglial cells but enhanced the expression of myelin-related proteins in the spinal cord. CONCLUSION: Our findings demonstrate that the myelination abnormalities observed in brain WM structures in HD extend to the spinal cord and suggest that specific expression of mHTT in oligodendrocytes contributes to such abnormalities.


Subject(s)
Huntington Disease , White Matter , Animals , Huntington Disease/genetics , Mice , Myelin Sheath , Oligodendroglia , Spinal Cord
5.
Cell Death Dis ; 11(9): 809, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978366

ABSTRACT

Huntington disease (HD) is a hereditary neurodegenerative disorder caused by mutant huntingtin (mHTT). Phosphorylation at serine-421 (pS421) of mHTT has been shown to be neuroprotective in cellular and rodent models. However, the genetic context of these models differs from that of HD patients. Here we employed human pluripotent stem cells (hiPSCs), which express endogenous full-length mHTT. Using genome editing, we generated isogenic hiPSC lines in which the S421 site in mHTT has been mutated into a phospho-mimetic aspartic acid (S421D) or phospho-resistant alanine (S421A). We observed that S421D, rather than S421A, confers neuroprotection in hiPSC-derived neural cells. Although we observed no effect of S421D on mHTT clearance or axonal transport, two aspects previously reported to be impacted by phosphorylation of mHTT at S421, our analysis revealed modulation of several aspects of mitochondrial form and function. These include mitochondrial surface area, volume, and counts, as well as improved mitochondrial membrane potential and oxidative phosphorylation. Our study validates the protective role of pS421 on mHTT and highlights a facet of the relationship between mHTT and mitochondrial changes in the context of human physiology with potential relevance to the pathogenesis of HD.


Subject(s)
Huntington Disease/genetics , Huntington Disease/metabolism , Induced Pluripotent Stem Cells/metabolism , Mitochondria/metabolism , Animals , Disease Models, Animal , Humans , Mice , Neuroprotection , Phenotype
6.
Biol Psychiatry ; 88(6): 500-511, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32653109

ABSTRACT

BACKGROUND: Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by epigenetic silencing of FMR1 and loss of FMRP expression. Efforts to understand the molecular underpinnings of the disease have been largely performed in rodent or nonisogenic settings. A detailed examination of the impact of FMRP loss on cellular processes and neuronal properties in the context of isogenic human neurons remains lacking. METHODS: Using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 to introduce indels in exon 3 of FMR1, we generated an isogenic human pluripotent stem cell model of FXS that shows complete loss of FMRP expression. We generated neuronal cultures and performed genome-wide transcriptome and proteome profiling followed by functional validation of key dysregulated processes. We further analyzed neurodevelopmental and neuronal properties, including neurite length and neuronal activity, using multielectrode arrays and patch clamp electrophysiology. RESULTS: We showed that the transcriptome and proteome profiles of isogenic FMRP-deficient neurons demonstrate perturbations in synaptic transmission, neuron differentiation, cell proliferation and ion transmembrane transporter activity pathways, and autism spectrum disorder-associated gene sets. We uncovered key deficits in FMRP-deficient cells demonstrating abnormal neural rosette formation and neural progenitor cell proliferation. We further showed that FMRP-deficient neurons exhibit a number of additional phenotypic abnormalities, including neurite outgrowth and branching deficits and impaired electrophysiological network activity. These FMRP-deficient related impairments have also been validated in additional FXS patient-derived human-induced pluripotent stem cell neural cells. CONCLUSIONS: Using isogenic human pluripotent stem cells as a model to investigate the pathophysiology of FXS in human neurons, we reveal key neural abnormalities arising from the loss of FMRP.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Induced Pluripotent Stem Cells , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Humans , Neurons
7.
Mol Autism ; 11(1): 41, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32460900

ABSTRACT

FXS is the most common genetic cause of intellectual (ID) and autism spectrum disorders (ASD). FXS is caused by loss of FMRP, an RNA-binding protein involved in the translational regulation of a large number of neuronal mRNAs. Absence of FMRP has been shown to lead to elevated protein synthesis and is thought to be a major cause of the synaptic plasticity and behavioural deficits in FXS. The increase in protein synthesis results in part from abnormal activation of key protein translation pathways downstream of ERK1/2 and mTOR signalling. Pharmacological and genetic interventions that attenuate hyperactivation of these pathways can normalize levels of protein synthesis and improve phenotypic outcomes in animal models of FXS. Several efforts are currently underway to trial this strategy in patients with FXS. To date, elevated global protein synthesis as a result of FMRP loss has not been validated in the context of human neurons. Here, using an isogenic human stem cell-based model, we show that de novo protein synthesis is elevated in FMRP-deficient neural cells. We further show that this increase is associated with elevated ERK1/2 and Akt signalling and can be rescued by metformin treatment. Finally, we examined the effect of normalizing protein synthesis on phenotypic abnormalities in FMRP-deficient neural cells. We find that treatment with metformin attenuates the increase in proliferation of FMRP-deficient neural progenitor cells but not the neuronal deficits in neurite outgrowth. The elevated level of protein synthesis and the normalization of neural progenitor proliferation by metformin treatment were validated in additional control and FXS patient-derived hiPSC lines. Overall, our results validate that loss of FMRP results in elevated de novo protein synthesis in human neurons and suggest that approaches targeting this abnormality are likely to be of partial therapeutic benefit in FXS.


Subject(s)
Fragile X Syndrome/etiology , Fragile X Syndrome/metabolism , Metformin/pharmacology , Neurons/drug effects , Neurons/metabolism , Protein Biosynthesis/drug effects , Cell Line , Cell Proliferation , Fragile X Syndrome/drug therapy , Gene Expression Profiling , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins c-akt/metabolism
8.
Neurobiol Dis ; 135: 104744, 2020 02.
Article in English | MEDLINE | ID: mdl-31931139

ABSTRACT

Structural and molecular myelination deficits represent early pathological features of Huntington disease (HD). Recent evidence from germ-free (GF) animals suggests a role for microbiota-gut-brain bidirectional communication in the regulation of myelination. In this study, we aimed to investigate the impact of microbiota on myelin plasticity and oligodendroglial population dynamics in the mixed-sex BACHD mouse model of HD. Ultrastructural analysis of myelin in the corpus callosum revealed alterations of myelin thickness in BACHD GF compared to specific-pathogen free (SPF) mice, whereas no differences were observed between wild-type (WT) groups. In contrast, myelin compaction was altered in all groups when compared to WT SPF animals. Levels of myelin-related proteins were generally reduced, and the number of mature oligodendrocytes was decreased in the prefrontal cortex under GF compared to SPF conditions, regardless of genotype. Minor differences in commensal bacteria at the family and genera levels were found in the gut microbiota of BACHD and WT animals housed in standard living conditions. Our findings indicate complex effects of a germ-free status on myelin-related characteristics, and highlight the adaptive properties of myelination as a result of environmental manipulation.


Subject(s)
Huntington Disease/microbiology , Myelin Proteins/metabolism , Myelin Sheath/pathology , White Matter/microbiology , Animals , Bacteria/isolation & purification , Corpus Callosum/metabolism , Corpus Callosum/microbiology , Disease Models, Animal , Huntington Disease/pathology , Mice, Transgenic , Myelin Sheath/metabolism , Neuronal Plasticity/physiology , Oligodendroglia/metabolism , Prefrontal Cortex/metabolism , White Matter/pathology
9.
Mol Neurobiol ; 56(10): 6873-6882, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30937636

ABSTRACT

White matter (WM) abnormalities are a well-established feature of Huntington disease (HD), although their nature is not fully understood. Here, we asked whether remyelination as a measure of WM plasticity is impaired in a model of HD. Using the cuprizone assay, we examined demyelination and remyelination responses in YAC128 HD mice. Treatment with 0.2% cuprizone (CPZ) for 6 weeks resulted in significant reduction in mature (GSTπ-positive) oligodendrocyte counts and FluoroMyelin staining in the corpus callosum, leading to similar demyelination states in YAC128 and wild-type (WT) mice. Six weeks following cessation of CPZ, we observed robust remyelination in WT mice as indicated by an increase in mature oligodendrocyte counts and FluoroMyelin staining. In contrast, YAC128 mice exhibited an impaired remyelination response. The increase in mature oligodendrocyte counts in YAC128 HD mice following CPZ cessation was lower than that of WT. Furthermore, there was no increase in FluoroMyelin staining compared to the demyelinated state in YAC128 mice. We confirmed these findings using electron microscopy where the CPZ-induced reduction in myelinated axons was reversed following CPZ cessation in WT but not YAC128 mice. Our findings demonstrate that remyelination is impaired in YAC128 mice and suggest that WM plasticity may be compromised in HD.


Subject(s)
Huntington Disease/physiopathology , Remyelination/physiology , Animals , Axons/pathology , Axons/ultrastructure , Corpus Callosum/pathology , Corpus Callosum/physiopathology , Cuprizone , Demyelinating Diseases/chemically induced , Demyelinating Diseases/complications , Demyelinating Diseases/pathology , Demyelinating Diseases/physiopathology , Disease Models, Animal , Humans , Huntington Disease/complications , Huntington Disease/pathology , Male , Mice, Transgenic , Neuroglia/metabolism , Neuroglia/pathology
10.
Neurobiol Dis ; 127: 65-75, 2019 07.
Article in English | MEDLINE | ID: mdl-30802499

ABSTRACT

Structural and molecular myelination deficits represent early pathological features of Huntington disease (HD). Recent evidence from germ-free (GF) animals suggests a role for microbiota-gut-brain bidirectional communication in the regulation of myelination. In this study, we aimed to investigate the impact of microbiota on myelin plasticity and oligodendroglial population dynamics in the mixed-sex BACHD mouse model of HD. Ultrastructural analysis of myelin in the corpus callosum revealed alterations of myelin thickness in BACHD GF compared to specific-pathogen free (SPF) mice, whereas no differences were observed between wild-type (WT) groups. In contrast, myelin compaction was altered in all groups when compared to WT SPF animals. Levels of myelin-related proteins were generally reduced, and the number of mature oligodendrocytes was decreased in the prefrontal cortex under GF compared to SPF conditions, regardless of genotype. Minor differences in commensal bacteria at the family and genera levels were found in the gut microbiota of BACHD and WT animals housed in standard living conditions. Our findings indicate complex effects of a germ-free status on myelin-related characteristics, and highlight the adaptive properties of myelination as a result of environmental manipulation.


Subject(s)
Corpus Callosum/pathology , Gastrointestinal Microbiome/physiology , Huntington Disease/microbiology , Myelin Sheath/pathology , Neuronal Plasticity/physiology , White Matter/pathology , Animals , Disease Models, Animal , Huntington Disease/pathology , Mice
11.
Mol Neurobiol ; 56(6): 4464-4478, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30334188

ABSTRACT

Laquinimod, an immunomodulatory agent under clinical development for Huntington disease (HD), has recently been shown to confer behavioural improvements that are coupled with prevention of atrophy of the white matter (WM)-rich corpus callosum (CC) in the YAC128 HD mice. However, the nature of the WM improvements is not known yet. Here we investigated the effects of laquinimod on HD-related myelination deficits at the cellular, molecular and ultrastructural levels. We showed that laquinimod treatment improves motor learning and motor function deficits in YAC128 HD mice, and confirmed its antidepressant effect even at the lowest dose used. In addition, we demonstrated for the first time the beneficial effects of laquinimod on myelination in the posterior region of the CC where it reversed changes in myelin sheath thickness and rescued Mbp mRNA and protein deficits. Furthermore, the effect of laquinimod on myelin-related gene expression was not region-specific since the levels of the Mbp and Plp1 transcripts were also increased in the striatum. Also, we did not detect changes in immune cell densities or levels of inflammatory genes in 3-month-old YAC128 HD mice, and these were not altered with laquinimod treatment. Thus, the beneficial effects of laquinimod on HD-related myelination abnormalities in YAC128 HD mice do not appear to be dependent on its immunomodulatory activity. Altogether, our findings describe the beneficial effects of laquinimod treatment on HD-related myelination abnormalities and highlight its therapeutic potential for the treatment of WM pathology in HD patients.


Subject(s)
Huntington Disease/drug therapy , Myelin Sheath/pathology , Myelin Sheath/ultrastructure , Quinolones/therapeutic use , Transcription, Genetic , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Behavior, Animal , Cell Count , Corpus Callosum/drug effects , Corpus Callosum/pathology , Corpus Callosum/physiopathology , Corpus Striatum/drug effects , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Cytochrome P-450 CYP1A1/metabolism , Depression/complications , Depression/drug therapy , Depression/physiopathology , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Humans , Huntington Disease/complications , Huntington Disease/genetics , Huntington Disease/physiopathology , Inflammation/genetics , Inflammation/pathology , Learning , Male , Mice, Transgenic , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Motor Activity/drug effects , Myelin Sheath/drug effects , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Oligodendroglia/pathology , Phenotype , Quinolones/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Transcription, Genetic/drug effects
12.
JCI Insight ; 2(23)2017 12 07.
Article in English | MEDLINE | ID: mdl-29212949

ABSTRACT

Pridopidine is currently under clinical development for Huntington disease (HD), with on-going studies to better characterize its therapeutic benefit and mode of action. Pridopidine was administered either prior to the appearance of disease phenotypes or in advanced stages of disease in the YAC128 mouse model of HD. In the early treatment cohort, animals received 0, 10, or 30 mg/kg pridopidine for a period of 10.5 months. In the late treatment cohort, animals were treated for 8 weeks with 0 mg/kg or an escalating dose of pridopidine (10 to 30 mg/kg over 3 weeks). Early treatment improved motor coordination and reduced anxiety- and depressive-like phenotypes in YAC128 mice, but it did not rescue striatal and corpus callosum atrophy. Late treatment, conversely, only improved depressive-like symptoms. RNA-seq analysis revealed that early pridopidine treatment reversed striatal transcriptional deficits, upregulating disease-specific genes that are known to be downregulated during HD, a finding that is experimentally confirmed herein. This suggests that pridopidine exerts beneficial effects at the transcriptional level. Taken together, our findings support continued clinical development of pridopidine for HD, particularly in the early stages of disease, and provide valuable insight into the potential therapeutic mode of action of pridopidine.


Subject(s)
Huntington Disease/drug therapy , Neuroprotective Agents/administration & dosage , Piperidines/administration & dosage , Animals , Anxiety/drug therapy , Anxiety/etiology , Behavior, Animal/drug effects , Corpus Callosum/pathology , Corpus Striatum/metabolism , Corpus Striatum/pathology , Depression/drug therapy , Depression/etiology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Evaluation, Preclinical/methods , Female , Gene Expression Regulation/drug effects , Huntington Disease/pathology , Huntington Disease/physiopathology , Huntington Disease/psychology , Male , Mice, Transgenic , Motor Activity/drug effects , Neuroprotective Agents/therapeutic use , Piperidines/therapeutic use , Secondary Prevention/methods , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...