Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Publication year range
1.
Nutr Hosp ; 2024 Sep 19.
Article in Spanish | MEDLINE | ID: mdl-39311005

ABSTRACT

BACKGROUND: morbid obesity is a major public health problem that is increasing. Currently, there are a limited number of studies carried out in the Mexican population that describe the effects of bariatric surgery. OBJECTIVE: to establish in people undergoing a bariatric procedure the metabolic and body composition difference before and after bariatric surgery. MATERIAL AND METHODS: an observational, analytical, and longitudinal study was carried out in 50 patients with morbid obesity who underwent laparoscopic Sleeve Gastrectomy (LSG) and Laparoscopic Roux-en-Y gastric bypass (LRYGB). Body composition and metabolic markers in blood were measured. Differences in the metabolic profile before and after surgery were analyzed in the entire study group and a subanalysis was performed by bariatric surgical technique, determining the percentage of remission of comorbidities. RESULTS: after the intervention, there is a significant decrease in all metabolic and body composition markers, except HDL cholesterol, which showed a tendency to increase without being significant. Women with LRYGB have a greater decrease in fat-free mass. LRYGB decreased the prevalence of fatty liver, gastroesophageal reflux, insulin resistance, and hypercholesterolemia more, while LSG decreased the prevalence of hypertension, osteoarthritis, hypothyroidism, and hypertriglyceridemia more. CONCLUSION: bariatric surgery induces metabolic changes that could contribute to improving comorbidities associated with obesity. In general, metabolic improvement is greater in LRYGB compared to LSG.

2.
Microorganisms ; 11(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37512821

ABSTRACT

Bifidobacterium longum is considered a microorganism with probiotic potential, which has been extensively studied, but these probiotic effects are strain dependent. This work aims to characterize the probiotic potential, based on the biochemical and genomic functionality, of B. longum LBUX23, isolated from neonates' feces. B. longum LBUX23 contains one circular genome of 2,287,838 bp with a G+C content of 60.05%, no plasmids, no CRISPR-Cas operon, possesses 56 tRNAs, 9 rRNAs, 1 tmRNA and 1776 coding sequences (CDSs). It has chromosomally encoded resistance genes to ampicillin and dicloxacillin, non-hemolytic activity, and moderate inhibition of Escherichia coli ATCC 25922 and to some emergent pathogen's clinical strains. B. longum LBUX23 was able to utilize lactose, sucrose, fructooligosaccharides (FOS), and lactulose. The maximum peak of bacterial growth was observed in sucrose and FOS at 6 h; in lactose and lactulose, it was shown at 8 h. B. longum LBUX23 can survive in gastrointestinal conditions (pH 4 to 7). A decrease in survival (96.5 and 93.8%) was observed at pH 3 and 3.5 during 120 min. argC, argH, and dapA genes could be involved in this tolerance. B. longum LBUX23 can also survive under primary and secondary glyco- or tauro-conjugated bile salts, and a mixture of bile salts due to the high extracellular bile salt hydrolase (BSH) activity (67.3 %), in taurocholic acid followed by taurodeoxycholic acid (48.5%), glycocholic acid (47.1%), oxgall (44.3%), and glycodeoxycholic acid (29.7%) probably due to the presence of the cbh and gnlE genes which form an operon (start: 119573 and end: 123812). Low BSH activity was determined intracellularly (<7%), particularly in glycocholic acid; no intracellular activity was shown. B. longum LBUX23 showed antioxidant effects in DPPH radical, mainly in intact cells (27.4%). In the case of hydroxyl radical scavenging capacity, cell debris showed the highest reduction (72.5%). In the cell-free extract, superoxide anion radical scavenging capacity was higher (90.5%). The genome of B. longum LBUX23 contains PNPOx, AhpC, Bcp, trxA, and trxB genes, which could be involved in this activity. Regarding adherence, it showed adherence up to 5% to Caco-2 cells. B. longum LBUX23 showed in vitro potential probiotic properties, mainly in BSH activity and antioxidant capacity, which indicates that it could be a good candidate for antioxidant or anti-cholesterol tests using in vivo models.

3.
PeerJ ; 11: e15465, 2023.
Article in English | MEDLINE | ID: mdl-37334132

ABSTRACT

Background: Obesity, a public health problem, is a state of metainflammation that influences the development of chronic degenerative diseases, particularly in patients with severe obesity. Objective: The objective of this study was to evidence immunometabolic differences in patients with different degrees of obesity, including severe obesity, by determining correlations between lymphocyte subpopulations and metabolic, body composition, and clinical variables. Methods: Peripheral blood immune cells (CD4+, CD8+ memory and effector T lymphocytes) were analyzed, and measures of body composition, blood pressure, and biochemical composition (glucose, glycated hemoglobin (HbA1c), insulin, C-reactive protein (CRP), and the lipid profile) were carried out in patients with different degrees of obesity. Results: The patients were classified according to total body fat (TBF) percentage as normal body fat, class 1 and 2 obesity, class 3 obesity, and class 4 obesity. The greater the TBF percentage, the more pronounced the differences in body composition (such as a decrease in the fat-free mass (FFM) that is defined as sarcopenic obesity) and the immunometabolic profile. There was an increase of CD3+ T lymphocytes (mainly CD4+, CD4+CD62-, and CD8+CD45RO+ T lymphocytes) and an increase in the TBF percentage (severity of obesity). Conclusions: The correlations between lymphocyte subpopulations and metabolic, body composition, and clinical variables demonstrated the existence of a chronic, low-intensity inflammatory process in obesity. Therefore, measuring the immunometabolic profile by means of lymphocyte subpopulations in patients with severe obesity could be useful to determine the severity of the disease and the increased risk of presenting obesity-associated chronic degenerative diseases.


Subject(s)
CD4-Positive T-Lymphocytes , Obesity, Morbid , Humans , Obesity, Morbid/metabolism , Lymphocyte Subsets , CD8-Positive T-Lymphocytes , Obesity/metabolism
4.
Microorganisms ; 10(11)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36363691

ABSTRACT

Bifidobacteria have been investigated due to their mutualistic microbe-host interaction with humans throughout their life. This work aims to make a biochemical and genomic characterization of Bifidobacterium pseudocatenulatum JCLA3. By multilocus analysis, the species of B. pseudocatenulatum JCLA3 was established as pseudocatenulatum. It contains one circular genome of 2,369,863 bp with G + C content of 56.6%, no plasmids, 1937 CDSs, 54 tRNAs, 16 rRNAs, 1 tmRNA, 1 CRISPR region, and 401 operons predicted, including a CRISPR-Cas operon; it encodes an extensive number of enzymes, which allows it to utilize different carbohydrates. The ack gene was found as part of an operon formed by xfp and pta genes. Two genes of ldh were found at different positions. Chromosomally encoded resistance to ampicillin and cephalothin, non-hemolytic activity, and moderate inhibition of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 6538 were demonstrated by B. pseudocatenulatum JCLA3; it can survive 100% in simulated saliva, can tolerate primary and secondary glyco- or tauro-conjugated bile salts but not in a mix of bile; the strain did not survive at pH 1.5-5. The cbh gene coding to choloylglycine hydrolase was identified in its genome, which could be related to the ability to deconjugate secondary bile salts. Intact cells showed twice as much antioxidant activity than debris. B. pseudocatenulatum JCLA3 showed 49% of adhesion to Caco-2 cells. The genome and biochemical analysis help to elucidate further possible biotechnological applications of B. pseudocatenulatum JCLA3.

5.
Genes (Basel) ; 9(12)2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30477135

ABSTRACT

The increasing number of OMICs studies demands bioinformatic tools that aid in the analysis of large sets of genes or proteins to understand their roles in the cell and establish functional networks and pathways. In the last decade, over-representation or enrichment tools have played a successful role in the functional analysis of large gene/protein lists, which is evidenced by thousands of publications citing these tools. However, in most cases the results of these analyses are long lists of biological terms associated to proteins that are difficult to digest and interpret. Here we present NeVOmics, Network-based Visualization for Omics, a functional enrichment analysis tool that identifies statistically over-represented biological terms within a given gene/protein set. This tool provides a hypergeometric distribution test to calculate significantly enriched biological terms, and facilitates analysis on cluster distribution and relationship of proteins to processes and pathways. NeVOmics is adapted to use updated information from the two main annotation databases: Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG). NeVOmics compares favorably to other Gene Ontology and enrichment tools regarding coverage in the identification of biological terms. NeVOmics can also build different network-based graphical representations from the enrichment results, which makes it an integrative tool that greatly facilitates interpretation of results obtained by OMICs approaches. NeVOmics is freely accessible at https://github.com/bioinfproject/bioinfo/.

6.
Microb Cell Fact ; 15(1): 173, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27716202

ABSTRACT

BACKGROUND: The heterotrimeric Gα protein Pga1-mediated signaling pathway regulates the entire developmental program in Penicillium chrysogenum, from spore germination to the formation of conidia. In addition it participates in the regulation of penicillin biosynthesis. We aimed to advance the understanding of this key signaling pathway using a proteomics approach, a powerful tool to identify effectors participating in signal transduction pathways. RESULTS: Penicillium chrysogenum mutants with different levels of activity of the Pga1-mediated signaling pathway were used to perform comparative proteomic analyses by 2D-DIGE and LC-MS/MS. Thirty proteins were identified which showed differences in abundance dependent on Pga1 activity level. By modifying the intracellular levels of cAMP we could establish cAMP-dependent and cAMP-independent pathways in Pga1-mediated signaling. Pga1 was shown to regulate abundance of enzymes in primary metabolic pathways involved in ATP, NADPH and cysteine biosynthesis, compounds that are needed for high levels of penicillin production. An in vivo phosphorylated protein containing a pleckstrin homology domain was identified; this protein is a candidate for signal transduction activity. Proteins with possible roles in purine metabolism, protein folding, stress response and morphogenesis were also identified whose abundance was regulated by Pga1 signaling. CONCLUSIONS: Thirty proteins whose abundance was regulated by the Pga1-mediated signaling pathway were identified. These proteins are involved in primary metabolism, stress response, development and signal transduction. A model describing the pathways through which Pga1 signaling regulates different cellular processes is proposed.


Subject(s)
Fungal Proteins/metabolism , GTP-Binding Protein alpha Subunits/metabolism , Gene Expression Regulation, Fungal , Penicillium chrysogenum/genetics , Penicillium chrysogenum/metabolism , Proteomics , Signal Transduction , Fungal Proteins/genetics , GTP-Binding Protein alpha Subunits/genetics , Morphogenesis , Mutation , Oxidative Phosphorylation , Penicillium chrysogenum/chemistry , Pleckstrin Homology Domains , Purines/metabolism , Spores, Fungal/growth & development , Tandem Mass Spectrometry , Two-Dimensional Difference Gel Electrophoresis
SELECTION OF CITATIONS
SEARCH DETAIL