Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.639
Filter
1.
Front Plant Sci ; 15: 1367781, 2024.
Article in English | MEDLINE | ID: mdl-38952844

ABSTRACT

The large water demand, insufficient deposition on the back of the leaf and the uneven distribution of droplets are the problems of traditional agricultural ground plant protection machinery, which leads to low agricultural control efficiency. Combined with the advantages of electrostatic spray technology and the characteristics of high working efficiency and low probability of droplets drift of ground sprayer, an inductive electrostatic boom spray system based on embedded electrode structure is designed and mounted on a large self-propelled boom sprayer for field testing. Based on the working characteristics of the fan nozzle and the analysis of the theory of charge, the inductive electrostatic spray device is designed. The performance of the device is tested and the rationality of the system design is verified by COMSOL numerical simulations, charge-to-mass ratio, and particle size distribution measurements. The spray deposition scanning software and the Box-Behnken experimental design method are used to analyze the spray droplet deposition rate and coverage density of the sprayer on the front and back of the target leaves. The results show that the embedded closed electrode structure designed in this paper can avoid the problem of electrode wetting, and the electric field generated by it is mainly concentrated in the spray liquid film area, and the intensity reaches 6~7 V/m. At the conventional application height (500 mm), the maximum charge-to-mass ratio is 2.91 mC/kg, and the average particle size is 168.22 µm, which is 12.87% lower than that of ordinary spray, when the spray pressure is 0.3 MPa and the electrostatic voltage is 12 kV. The results of field experiments show that the optimum combination of the working parameters with the spray speed is 8.40 m/s, the spray pressure is 0.35 MPa, the charging voltage is 11.50 kV, the amount of droplet deposition in the lower dorsal area of the blade is 1.44 µL·cm-2. This study can provide a certain basis for the application of electrostatic spray technology in ground sprayers.

2.
Front Plant Sci ; 15: 1369696, 2024.
Article in English | MEDLINE | ID: mdl-38952847

ABSTRACT

Effectively monitoring pest-infested areas by computer vision is essential in precision agriculture in order to minimize yield losses and create early scientific preventative solutions. However, the scale variation, complex background, and dense distribution of pests bring challenges to accurate detection when utilizing vision technology. Simultaneously, supervised learning-based object detection heavily depends on abundant labeled data, which poses practical difficulties. To overcome these obstacles, in this paper, we put forward innovative semi-supervised pest detection, PestTeacher. The framework effectively mitigates the issues of confirmation bias and instability among detection results across different iterations. To address the issue of leakage caused by the weak features of pests, we propose the Spatial-aware Multi-Resolution Feature Extraction (SMFE) module. Furthermore, we introduce a Region Proposal Network (RPN) module with a cascading architecture. This module is specifically designed to generate higher-quality anchors, which are crucial for accurate object detection. We evaluated the performance of our method on two datasets: the corn borer dataset and the Pest24 dataset. The corn borer dataset encompasses data from various corn growth cycles, while the Pest24 dataset is a large-scale, multi-pest image dataset consisting of 24 classes and 25k images. Experimental results demonstrate that the enhanced model achieves approximately 80% effectiveness with only 20% of the training set supervised in both the corn borer dataset and Pest24 dataset. Compared to the baseline model SoftTeacher, our model improves mAP @0.5 (mean Average Precision) at 7.3 compared to that of SoftTeacher at 4.6. This method offers theoretical research and technical references for automated pest identification and management.

4.
Chaos ; 34(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953752

ABSTRACT

The synchronous meshing of the gear pair and the screw pair is a typical feature of the planetary roller screw mechanism. In order to fully derive and analyze the nonlinear dynamic characteristics of the system, this paper creatively incorporates the time-varying meshing stiffness of gear pair and the comprehensive transmission error into the research content. Combined with the thread contact force and friction force between the roller and the screw and between the roller and the nut, the nonlinear dynamic model of the planetary roller screw mechanism considering the meshing excitation of the gear pair is established. According to the time domain diagram, frequency domain diagram, phase plane diagram, Poincaré section diagram, three-dimensional spectrum diagram, and spatial phase diagram, the nonlinear behavior of the system is described in detail, and the bifurcation evolution process of the system under the excitation frequency parameters of the external load is revealed. In addition, based on the theory of multi-scale method and considering the variables such as meshing stiffness, meshing damping, and load fluctuation, the stability equation of the primary resonance of the system is derived. The analysis of the stability of the system under different working conditions shows that the parameters are selected within a reasonable range, which effectively reduces the primary common amplitude value and enhances the overall stability of the system. The research content improves the previous system dynamics modeling method and provides a theoretical basis for the nonlinear dynamics modeling method and parameter optimization design of the planetary roller screw mechanism.

5.
Arch Microbiol ; 206(7): 335, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953983

ABSTRACT

Salmonella is considered as one of the most common zoonotic /foodborne pathogens in the world. The application of bacteriophages as novel antibacterial agents in food substrates has become an emerging strategy. Bacteriophages have the potential to control Salmonella contamination.We have isolated and characterized a broad-spectrum Salmonella phage, SP154, which can lyse 9 serotypes, including S. Enteritidis, S. Typhimurium, S. Pullorum, S. Arizonae, S. Dublin, S. Cholerasuis, S. Chester, S. 1, 4, [5], 12: i: -, and S. Derby, accounting for 81.9% of 144 isolates. SP154 showed a short latent period (40 min) and a high burst size (with the first rapid burst size at 107 PFUs/cell and the second rapid burst size at approximately 40 PFUs/cell). Furthermore, SP154 activity has higher survival rates across various environmental conditions, including pH 4.0-12.0 and temperatures ranging from 4 to 50 °C for 60 min, making it suitable for diverse food processing and storage applications. Significant reductions in live Salmonella were observed in different foods matrices such as milk and chicken meat, with a decrease of up to 1.9 log10 CFU/mL in milk contamination and a 1 log10 CFU/mL reduction in chicken meat. Whole genome sequencing analysis revealed that SP154 belongs to the genus Ithacavirus, subfamily Humphriesvirinae, within the family Schitoviridae. Phylogenetic analysis based on the terminase large subunit supported this classification, although an alternate tree using the tail spike protein gene suggested affiliation with the genus Kuttervirus, underscoring the limitations of relying on a single gene for phylogenetic inference. Importantly, no virulence or antibiotic resistance genes were detected in SP154. Our research highlights the potential of using SP154 for biocontrol of Salmonella in the food industry.


Subject(s)
Food Microbiology , Genome, Viral , Salmonella Phages , Salmonella , Whole Genome Sequencing , Salmonella Phages/genetics , Salmonella Phages/isolation & purification , Salmonella Phages/classification , Salmonella Phages/physiology , Animals , Salmonella/virology , Salmonella/genetics , Salmonella/classification , Salmonella/isolation & purification , Chickens , Milk/microbiology , Milk/virology , Meat/microbiology , Meat/virology , Phylogeny
6.
Article in English | MEDLINE | ID: mdl-38954246

ABSTRACT

PURPOSE OF REVIEW: Chronic migraine is a disabling progressive disorder without effective management approaches. Animal models have been developed and used in chronic migraine research. However, there are several problems with existing models. Therefore, we aimed to summarize and analyze existing animal models to facilitate translation from basic to clinical. RECENT FINDINGS: The most commonly used models are the inflammatory soup induction model and the nitric oxide donor induction model. In addition, KATP openers have also been used in model induction. Based on the above models, some molecular targets have been identified, such as glutamate receptors. However, each model has its shortcomings and characteristics, and there are still some common problems that need to be solved, such as spontaneous headache, evaluation criteria after model establishment, and identification methods. In this review, we summarized and highlighted the advantages and limitations of the currently commonly used animal models of chronic migraine with a special focus on drug discovery and current therapeutic strategies, and discussed the directions that can be worked on in the future.

7.
Plant Physiol Biochem ; 214: 108880, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38954943

ABSTRACT

As the third active gas signal molecule in plants, hydrogen sulfide (H2S) plays important roles in physiological metabolisms and biological process of fruits and vegetables during postharvest storage. In the present study, the effects of H2S on enhancing resistance against soft rot caused by Botryosphaeria dothidea and the involvement of jasmonic acid (JA) signaling pathway in kiwifruit during the storage were investigated. The results showed that 20 µL L-1 H2S fumigation restrained the disease incidence of B. dothidea-inoculated kiwifruit during storage, and delayed the decrease of firmness and the increase of soluble solids (SSC) content. H2S treatment increased the transcription levels of genes related to JA biosynthesis (AcLOX3, AcAOS, AcAOC2, and AcOPR) and signaling pathway (AcCOI1, AcJAZ5, AcMYC2, and AcERF1), as well as the JA accumulation. Meanwhile, H2S promoted the expression of defense-related genes (AcPPO, AcSOD, AcGLU, AcCHI, AcAPX, and AcCAT). Correlation analysis revealed that JA content was positively correlated with the expression levels of JA biosynthesis and defense-related genes. Overall, the results indicated that H2S could promote the increase of endogenous JA content and expression of defense-related genes by regulating the transcription levels of JA pathway-related genes, which contributed to the inhibition on the soft rot occurrence of kiwifruit.

8.
Microb Physiol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955164

ABSTRACT

INTRODUCTION: The global poultry industry produces millions of tons of waste feathers every year, which can be degraded to make feed, fertilizer, and daily chemicals. However, feather degradation is a complex process that is not yet fully understood. This results in low degradation efficiency and difficulty in industrial applications. Omics-driven system biology research offers an effective solution to quickly and comprehensively understand the molecules and mechanisms involved in a metabolic pathway. METHODS: In the early stage of this process, feathers are hydrolyzed into water-soluble keratin monomers. In this study, we used high-throughput RNA-seq technology to analyze the genes involved in the internalization and degradation of keratin monomers in S. maltophilia DHHJ strain cells. Moreover, we used Co-IP with LC-MS/MS technology to search for proteins that interact with recombinant keratin monomers. RESULTS: We discovered TonB transports and molecular chaperones associating with the keratin monomer, which may play a crucial role in the transmembrane transport of keratin. Meanwhile, multiple proteases belonging to distinct families were identified as binding partners of keratin monomers, among which ATPases associated with diverse cellular activities (AAA+) family proteases are overrepresented. Four genes, including JJL50_15620, JJL50_17955 (TonB-dependent receptors), JJL50_03260 (ABC transporter ATP-binding protein), and JJL50_20035 (ABC transporter substrate-binding protein), were selected as representatives for determining their expressions under different culture conditions using qRT-PCR and they were found to be upregulated in response to keratin degradation consistent with the data from RNA-seq and Co-IP. CONCLUSION: This study highlights the complexity of keratin biodegradation in S. maltophilia DHHJ, in which multiple pathways are involved such as protein folding, protein transport, and several protease systems. Our findings provide new insights into the mechanism of feather degradation.

9.
Vet Med Sci ; 10(4): e1532, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952277

ABSTRACT

BACKGROUND: Antibodies have been proven effective as diagnostic agents for detecting zoonotic diseases. The variable domain of camel heavy chain antibody (VHH), as an antibody derivative, may be used as an alternative for traditional antibodies in existing immunodiagnostic reagents for detecting rapidly spreading infectious diseases. OBJECTIVES: To expedite the isolation of specific antibodies for diagnostic purposes, we constructed a semi-synthetic camel single domain antibody library based on the phage display technique platform (PDT) and verified the validity of this study. METHODS: The semi-synthetic single domain antibody sequences consist of two parts: one is the FR1-FR3 region amplified by RT-PCR from healthy camel peripheral blood lymphocytes (PBLs), and the other part is the CDR3-FR4 region synthesised as an oligonucleotide containing CDR3 randomised region. The two parts were fused by overlapping PCR, resulting in the rearranged variable domain of heavy-chain antibodies (VHHs). Y. pestis low-calcium response V protein (LcrV) is an optional biomarker to detect the Y. pestis infection. The semi-synthetic library herein was screened using recombinant (LcrV) as a target antigen. RESULTS: After four cycles of panning the library, four VHH binders targeting 1-270 aa residues of LcrV were isolated. The four VHH genes with unique sequences were recloned into an expression vector and expressed as VHH-hFc chimeric antibodies. The purified antibodies were identified and used to develop a lateral flow immunoassay (LFA) test strip using latex microspheres (LM) for the rapid and visual detection of Y. pestis infection. CONCLUSIONS: These data demonstrate the great potential of the semi-synthetic library for use in isolation of antigen-specific nanobodies and the isolated specific VHHs can be used in antigen-capture immunoassays.


Subject(s)
Antigens, Bacterial , Camelus , Single-Domain Antibodies , Yersinia pestis , Animals , Yersinia pestis/immunology , Single-Domain Antibodies/immunology , Antigens, Bacterial/immunology , Plague/diagnosis , Plague/veterinary , Plague/immunology , Immunoassay/methods , Immunoassay/veterinary , Antibodies, Bacterial/immunology
10.
Sleep Med ; 121: 102-110, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959716

ABSTRACT

OBJECTIVES: To explore the causal relationships between sex hormone levels and incidence of isolated REM sleep behavior disorder (iRBD). METHODS: In our study, we utilized Genome-Wide Association Studies (GWAS) data for iRBD, including 9447 samples with 1061 cases of iRBD provided by the International RBD Study Group. Initially, we conducted a two-sample univariate MR analysis to explore the impact of sex hormone-related indicators on iRBD. This was followed by the application of multivariable MR methods to adjust for other hormone levels and potential confounders. Finally, we undertook a network MR analysis, employing brain structure Magnetic Resonance Imaging (MRI) characteristics as potential mediators, to examine whether sex hormones could indirectly influence the incidence of iRBD by affecting brain structure. RESULTS: Bioavailable testosterone (BioT) is an independent risk factor for iRBD (Odds Ratio [95 % Confidence Interval] = 2.437 [1.308, 4.539], P = 0.005, corrected-P = 0.020), a finding that remained consistent even after adjusting for other sex hormone levels and potential confounders. Additionally, BioT appears to indirectly increase the risk of iRBD by reducing axial diffusivity and increasing the orientation dispersion index in the left cingulum and cingulate gyrus. CONCLUSIONS: Our research reveals that elevated levels of BioT contribute to the development of iRBD. However, the specific impact of BioT on different sexes remains unclear. Furthermore, high BioT may indirectly lead to iRBD by impairing normal pathways in the left cingulum and cingulate gyrus and fostering abnormal pathway formation.

11.
J Colloid Interface Sci ; 674: 959-971, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38959741

ABSTRACT

Despite the bright fortune of lithium-sulfur (Li-S) batteries as one of the next-generation energy storage systems owing to the ultrahigh theoretical energy density and earth-abundance of sulfur, crucial challenges including polysulfide shuttling and low sulfur content of sulfur cathodes need to be overcome before the commercial survival of sulfur cathodes. Herein, cobalt/carbon spheres embedded CNTs (Co-C-CNTs) are rationally designed as multifunctional hosts to synergistically address the drawbacks of sulfur cathodes. The host is synthesized by a facile pyrolysis using Co(OH)2 template and followed with the controllable etching process. The hierarchical porous structure owning high pore volume and surface area can buffer the volume change, physically confine polysulfides, and provide conductive networks. Besides, partially remained metallic cobalt nanoparticles are favorable for chemical adsorption and conversion of polysulfides, as validated by density functional theory simulations. With the combination of above merits, the S@Co-C-CNTs cathodes with a high sulfur content of 80 wt% present a superior initial capacity (1568 mAh g-1 at 0.1C) with ultrahigh 93.6% active material utilization, and excellent rate performance (649 mAh g-1 at 2C), providing feasible strategies for the optimization of cathodes in metal-sulfur batteries.

12.
Biochim Biophys Acta Rev Cancer ; : 189148, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960006

ABSTRACT

Vesicles are loaded with a variety of cargoes, including membrane proteins, secreted proteins, signaling molecules, and various enzymes, etc. Not surprisingly, vesicle transport is essential for proper cellular life activities including growth, division, movement and cellular communication. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion of vesicles with their target compartments that is fundamental for cargo delivery. Recent studies have shown that multiple SNARE family members are aberrantly expressed in human cancers and actively contribute to malignant proliferation, invasion, metastasis, immune evasion and treatment resistance. Here, the localization and function of SNARE proteins in eukaryotic cells are firstly mapped. Then we summarize the expression and regulation of SNAREs in cancer, and describe their contribution to cancer progression and mechanisms, and finally we propose engineering botulinum toxin as a strategy to target SNAREs for cancer treatment.

13.
Int J Biol Macromol ; : 133505, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960225

ABSTRACT

Electromagnetic interference (EMI) shielding materials play a vital role in human society, especially in light of the rapid development of electronic communication equipment. Therefore, it is urgent to develop green, high-efficiency EMI shielding materials. Wood, as a renewable raw material, possesses significant structural advantages in studying EMI materials due to its unique 3D pore structure. Herein, we report magnetoelectric lignocellulosic matrix composites derived from the delignified wood for efficient EMI shielding. The composite was fabricated by in-situ polymerization of PEDOT conductive coating and magnetic Fe3O4 in delignified wood. The conductive 3D pore structure of Fe3O4/PEDOT@wood could effectively cause dielectric loss and multiple internal reflections. Combined with the magnetic loss of Fe3O4, the material exhibited excellent EMI shielding effectiveness (SE), which could be attributed to the synergistic effect of dielectric and magnetic losses. The Fe3O4/PEDOT@wood showed excellent conductivity (103 S/m), good magnetism (26.7 emu/g), the EMI SE up to 59.8 dB, and high SEA/SET ratios of~84.2 % to 95.7 % at 2 mm in X -band. Moreover, the material exhibited a high compressive strength and tensile strength of 100.8 MPa and 18.1 MPa, respectively. Therefore, this work provided a reference for the preparation of high-efficiency EMI shielding materials.

14.
Environ Res ; : 119537, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960362

ABSTRACT

To recover methane from waste activated sludge through anaerobic digestion (AD) is one promising alternative to achieve carbon neutrality for wastewater treatment plants. However, humic acids (HAs) are one of the major compositions in waste activated sludge, and their accumulation performs inhibition effects on AD. This study investigated the potentials of biochar (BC) in alleviating inhibition effects of HAs on AD. Results showed that although the accumulated HAs reduced methane yield by 9.37% compared to control, the highest methane yield, 132.6 mL CH4/g VSS, was obtained after adding BC, which was 45.9% higher than that in HA group. Mechanism analysis showed that BC promoted the activities of hydrolase such as protease and α-glucosidase, which were 69.7% and 29.7% higher than those in HA group, respectively. The conversion of short-chain fatty acids was accelerated. In addition, the evolution of electroactive microorganisms like Clostridium_sensu_stricto_13 and Methanosaeta were consistent with the activitiy of electron transfer and the content of cytochrome c. Furthermore, parts of HAs rather than all of them were adsorbed by BC, and the remaining free HAs and BC formed synergistic effects on methanogenesis, then both CO2 reduction and acetoclastic methanogenesis pathways were improved. The findings may provide some solutions to alleviate inhibition effects of HAs on AD.

15.
Int J Lab Hematol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960878

ABSTRACT

INTRODUCTION: Autologous hematopoietic stem cell transplantation (ASCT) has gained extensive application in the treatment of lymphoma and multiple myeloma (MM). Plenty of studies demonstrate that peripheral blood indicators could be considered potential predictive biomarkers for hematopoietic stem cells (HSCs) collection efficiency, including white blood cell count (WBC), monocyte count (Mono), platelet count (PLT), hematocrit, and hemoglobin levels. Currently, clinically practical predictive models based on these peripheral detection indicators to quickly, conveniently, and accurately predict collection efficiency are lacking. METHODS: In total, 139 patients with MM and lymphoma undergoing mobilization and collection of ASCT were retrospectively studied. The study endpoint was successful collection of autologous HSCs. We analyzed the effects of clinical characteristics and peripheral blood markers on collection success, and screened variables to establish a prediction model. We determined the optimal cutoff value of peripheral blood markers for predicting successful stem cell collection and the clinical value of a multi-marker prediction approach. We also established a prediction model for collection efficacy. RESULTS: Univariate and multivariate logistic regression analyses showed that the mobilization regimen, Mono, PLT, mononuclear cell count (MNC), and peripheral blood CD34+ cell count (PB CD34+ counts) were significant predictors of successful collection of peripheral blood stem cells (PBSC). Two predictive models were constructed based on the results of multivariate logistic analyses. Model 1 included the mobilization regimen, Mono, PLT, and MNC, whereas Model 2 included the mobilization regimen, Mono, PLT, MNC, and PB CD34+ counts. Receiver operating characteristic (ROC) curve analysis showed that the PB CD34+ counts, Model 1, and Model 2 could predict successful HSCs collection, with cutoff values of 26.92 × 106/L, 0.548, and 0.355, respectively. Model 1 could predict successful HSCs collection with a sensitivity of 84.62%, specificity of 75.73%, and area under the curve (AUC) of 0.863. Model 2 could predict successful HSCs collection with a sensitivity of 83.52%, specificity of 94.17%, and AUC of 0.946; thus, it was superior to the PB CD34+ counts alone. CONCLUSION: Our findings suggest that the combination of the mobilization regimen, Mono, PLT, MNC, and PB CD34+ counts before collection has predictive value for the efficacy of autologous HSCs collection in patients with MM and lymphoma. Using models based on these predictive markers may help to avoid over-collection and improve patient outcomes.

16.
Environ Sci Technol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961056

ABSTRACT

Accumulating evidence linked extreme temperature events (ETEs) and fine particulate matter (PM2.5) to cardiometabolic multimorbidity (CMM); however, it remained unknown if and how ETEs and PM2.5 interact to trigger CMM occurrence. Merging four Chinese national cohorts with 64,140 free-CMM adults, we provided strong evidence among ETEs, PM2.5 exposure, and CMM occurrence. Performing Cox hazards regression models along with additive interaction analyses, we found that the hazards ratio (HRs) of CMM occurrence associated with heatwave and cold spell were 1.006-1.019 and 1.063-1.091, respectively. Each 10 µg/m3 increment of PM2.5 concentration was associated with 17.9% (95% confidence interval: 13.9-22.0%) increased risk of CMM. Similar adverse effects were also found among PM2.5 constituents of nitrate, organic matter, sulfate, ammonium, and black carbon. We observed a synergetic interaction of heatwave and PM2.5 pollution on CMM occurrence with relative excess risk due to the interaction of 0.999 (0.663-1.334). Our study provides novel evidence that both ETEs and PM2.5 exposure were positively associated with CMM occurrence, and the heatwave interacts synergistically with PM2.5 to trigger CMM.

17.
Anal Methods ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958432

ABSTRACT

Quantitative nuclear magnetic resonance (qNMR) has a potential risk of inaccurate quantification of complex organic compounds with low purity due to incomplete separation of the impurity signals and the target component signals. The high performance liquid chromatography-qNMR (HPLC-qNMR) method removes impurities from the sample by HPLC and accurately determines the purity of the sample by qNMR, avoiding the laborious, time-consuming, and costly step of qualitative and quantitative determination of impurities in conventional mass balance methods. An improved method, named post-collection purity correction for internal standard correction-HPLC-qNMR (ISC-HPLC-qNMR), was developed and demonstrated on a complex compound oxytetracycline with low purity. In this method, a correction factor was introduced to compensate for the inability to achieve 100% purity through the HPLC purification procedure. The purity value with standard deviation of the oxytetracycline study material using this method was 82.00% ± 0.82%, while that obtained from the conventional qNMR with deconvolution was 81.70% ± 0.35%. The consistency of these results demonstrated that the improved method extends the applicability to the samples where HPLC is not capable of purifying complex compounds with low purity to near 100%, especially containing highly similar structural-related impurities. Furthermore, this method allows purification and quantification without the need to identify impurities in the sample, resulting in significant savings of time and cost. Additionally, it effectively compensates for the limitations of qNMR deconvolution in handling peak overlap in the sample.

18.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963028

ABSTRACT

Diabetic nephropathy (DN) also known as diabetic kidney disease, is a major microvascular complication of diabetes and a leading cause of end­stage renal disease (ESRD), which affects the morbidity and mortality of patients with diabetes. Despite advancements in diabetes care, current diagnostic methods, such as the determination of albuminuria and the estimated glomerular filtration rate, are limited in sensitivity and specificity, often only identifying kidney damage after considerable morphological changes. The present review discusses the potential of metabolomics as an approach for the early detection and management of DN. Metabolomics is the study of metabolites, the small molecules produced by cellular processes, and may provide a more sensitive and specific diagnostic tool compared with traditional methods. For the purposes of this review, a systematic search was conducted on PubMed and Google Scholar for recent human studies published between 2011 and 2023 that used metabolomics in the diagnosis of DN. Metabolomics has demonstrated potential in identifying metabolic biomarkers specific to DN. The ability to detect a broad spectrum of metabolites with high sensitivity and specificity may allow for earlier diagnosis and better management of patients with DN, potentially reducing the progression to ESRD. Furthermore, metabolomics pathway analysis assesses the pathophysiological mechanisms underlying DN. On the whole, metabolomics is a potential tool in the diagnosis and management of DN. By providing a more in­depth understanding of metabolic alterations associated with DN, metabolomics could significantly improve early detection, enable timely interventions and reduce the healthcare burdens associated with this condition.


Subject(s)
Biomarkers , Diabetic Nephropathies , Metabolomics , Humans , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/metabolism , Metabolomics/methods , Animals
20.
Angew Chem Int Ed Engl ; : e202409432, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946171

ABSTRACT

Host-guest chemistry, a pivotal branch of supramolecular chemistry, plays an essential role in understanding and constructing complex structures through non-covalent interactions. Organic molecular cages, characterized by their intrinsic confined cavities, can selectively bind a variety of guest molecules. Their host-guest chemistry has been well studied in the solution phase, and several attempts have been made to encode well-defined molecular architectures into solid-state polymeric materials. However, only limited studies have explored their potential in the solid state, where their lack of robustness and less ordered networks significantly hinder practical applications. Herein, we report the synthesis of a single-crystal cage framework and a systematic study of its host-guest chemistry, spanning from the solution state to the solid state. Our studies reveal that the host-guest interactions inherent to the cage are successfully maintained in the solid-state polymeric material. Furthermore, the framework's robustness allows for the guest molecules (fullerene) to be released triggered by an organic acid (trifluoracetic acid), with subsequent regeneration of the framework through an organic base (triethylamine) treatment. Our findings represent the first synthesis of a robust, single-crystal cage framework exhibiting highly selective and reversible host-guest chemistry, thus showing great potential towards molecular separation application.

SELECTION OF CITATIONS
SEARCH DETAIL
...