Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.343
Filter
1.
Inorg Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982641

ABSTRACT

Developing high-performance electrodes for flexible antifreezing energy storage devices has been a significant challenge with the increasing demand for portable components. In this work, Cr-substituted SrCoO3-δ perovskites were first proposed as potential low-temperature supercapacitor electrode materials. The high-valence Cr6+ ([Ne]3s23p6) substitution favors a high-spin state of Co ions with enhanced electronic repulsion effect, ultimately forming a stable cubic structure with high conductivity. Accordingly, the modification strategies of SrCoO3 through the p6 configuration cation substitution have been improved. As a result, the asymmetric SrCo0.95Cr0.05O3-δ@CC//PPy@CC device exhibited a high energy density of 44.90 Wh kg-1 at 902.01 W kg-1 and maintained a 95.8% specific capacitance after 10,000 cycles, demonstrating an ultralong cyclic stability. The dramatically improved electrochemical performance was attributed to the stabilized crystal structure, increased oxygen vacancy, and accelerated oxygen diffusion rate. Furthermore, a quasi-solid-state supercapacitor with ethylene glycol (EG)-modified KOH/PVA organohydrogel electrolyte was developed through an advance in situ-integrated strategy. After bending at 180° for 1000 cycles, only a 9.7% capacity decay was observed. Even under -40 °C, the supercapacitor has a large energy density of 46.94 µWh cm-2. The present work represents the initial investigation into utilizing perovskite materials for antifreezing energy storage device, thereby confirming their potential application as low-temperature electronic components.

2.
Prog Biophys Mol Biol ; 191: 1-10, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971324

ABSTRACT

Transfer RNA-derived small RNAs (tsRNAs), a recently identified subclass of small non-coding RNAs (sncRNAs), emerge through the cleavage of mature transfer RNA (tRNA) or tRNA precursors mediated by specific enzymes. The tumor necrosis factor (TNF) protein, a signaling molecule produced by activated macrophages, plays a pivotal role in systemic inflammation. Its multifaceted functions include the capacity to eliminate or hinder tumor cells, enhance the phagocytic capabilities of neutrophils, confer resistance against infections, induce fever, and prompt the production of acute phase proteins. Notably, four TNF-related tsRNAs have been conclusively linked to distinct diseases. Examples include 5'tiRNA-Gly in skeletal muscle injury, tsRNA-21109 in systemic lupus erythematosus (SLE), tRF-Leu-AAG-001 in endometriosis (EMs), and tsRNA-04002 in intervertebral disk degeneration (IDD). These tsRNAs exhibit the ability to suppress the expression of TNF-α. Additionally, KEGG analysis has identified seven tsRNAs potentially involved in modulating the TNF pathway, exerting their influence across a spectrum of non-cancerous diseases. Noteworthy instances include aberrant tiRNA-Ser-TGA-001 and tRF-Val-AAC-034 in intrauterine growth restriction (IUGR), irregular tRF-Ala-AGC-052 and tRF-Ala-TGC-027 in obesity, and deviant tiRNA-His-GTG-001, tRF-Ser-GCT-113, and tRF-Gln-TTG-035 in irritable bowel syndrome with diarrhea (IBS-D). This comprehensive review explores the biological functions and mechanisms of tsRNAs associated with the TNF signaling pathway in both cancer and other diseases, offering novel insights for future translational medical research.

3.
Proc Natl Acad Sci U S A ; 121(29): e2401834121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38976739

ABSTRACT

Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide, but the underlying molecular mechanisms remain largely unclear. The transcription factor (TF) specificity protein 1 (SP1) plays a crucial role in the development of various cancers, including LUAD. Recent studies have indicated that master TFs may form phase-separated macromolecular condensates to promote super-enhancer (SE) assembly and oncogene expression. In this study, we demonstrated that SP1 undergoes phase separation and that its zinc finger 3 in the DNA-binding domain is essential for this process. Through Cleavage Under Targets & Release Using Nuclease (CUT&RUN) using antibodies against SP1 and H3K27ac, we found a significant correlation between SP1 enrichment and SE elements, identified the regulator of the G protein signaling 20 (RGS20) gene as the most likely target regulated by SP1 through SE mechanisms, and verified this finding using different approaches. The oncogenic activity of SP1 relies on its phase separation ability and RGS20 gene activation, which can be abolished by glycogen synthase kinase J4 (GSK-J4), a demethylase inhibitor. Together, our findings provide evidence that SP1 regulates its target oncogene expression through phase separation and SE mechanisms, thereby promoting LUAD cell progression. This study also revealed an innovative target for LUAD therapies through intervening in SP1-mediated SE formation.


Subject(s)
Adenocarcinoma of Lung , Gene Expression Regulation, Neoplastic , Lung Neoplasms , RGS Proteins , Sp1 Transcription Factor , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , Humans , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , RGS Proteins/metabolism , RGS Proteins/genetics , Cell Line, Tumor , Animals , Enhancer Elements, Genetic , Disease Progression , Mice , Phase Separation
4.
Front Psychol ; 15: 1365817, 2024.
Article in English | MEDLINE | ID: mdl-38952833

ABSTRACT

Background: Meaning in life is a crucial aspect of psychological well-being, often overlooked despite its clinical significance. This warrants further investigation, especially regarding its relationship with frailty and psychological resilience. Objective: This study aims to assess the status and relevance of frailty, psychological resilience, and meaning in life among older adults in Chinese nursing homes. Additionally, it explores the mediating role of psychological resilience between frailty and meaning in life, providing insights to improve the meaning in life for older adults in nursing homes. Methods: Between August 2022 and November 2022, 302 older adults in Chinese nursing homes were selected using convenience sampling. The study utilized the Socio-demographic Characteristics Questionnaire, Tilburg Frailty Indicator, Connor-Davidson Resilience Scale, and the Source of Meaning Scale for Older Adults. A face-to-face questionnaire survey was conducted, and SPSS 27.0 was employed for analyzing correlations between frailty, psychological resilience, and meaning in life. The mediating effect of psychological resilience was assessed using Model 4 in the Process plug-in. Results: Older adults in nursing homes exhibited a frailty total score of 4.00 (2.00, 5.00), with a prevalence of 28.5%. Psychological resilience scored 66.00 (51.75, 76.00), and meaning in life scored 149.00 (132.00, 158.25). Frailty showed a negative correlation with both meaning in life and psychological resilience, while meaning in life demonstrated a positive correlation with psychological resilience. Psychological resilience exhibited a partial mediating effect, accounting for 51.04% of the total effect between frailty and meaning in life. Conclusion: Frailty incidence is high among older adults in nursing homes, with psychological resilience at a general level and meaning in life in the upper middle level. Psychological resilience plays a crucial role as a partial mediator between frailty and meaning in life. Timely assessment of frailty, targeted interventions, and improvements in psychological resilience are essential for enhancing the meaning in life and promoting successful aging.

5.
Mater Horiz ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946550

ABSTRACT

Birefringent crystals can manipulate the phase and polarization of light, so they are widely used as essential components in various optical devices. Common strategies to construct birefringent crystals are introducing metal cations that are either able to realize favorable coordination with functional anionic units or are susceptible to polarizability anisotropy. Herein, we report a metal-free crystal, NH4(H2C6N7O3)·2H2O, synthesized using the facile solution method. In the crystal structure of NH4(H2C6N7O3)·2H2O, (H2C6N7O3)- functional units are assembled in an optimal manner by cooperative non-covalent interactions, i.e., hydrogen bonding and π-π interactions. As a result, this metal-free crystal possesses exceptional birefringence up to 0.54@550 nm, which is larger than those of most metal-containing birefringent crystals. In addition, the interference color of this crystal does not change obviously from 243 K to 313 K, indicating that the birefringence is robust at different temperatures. This work will inspire useful insights into the role of non-covalent interactions in designing outstanding birefringent crystals for efficient polarized optical devices.

6.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949472

ABSTRACT

With the development of 5G technology, the accurate measurement of the complex permittivity of a printed circuit board (PCB) in the wide frequency range is crucial for the design of high-frequency circuits. In this paper, a microwave measurement device and method based on the double-sided parallel-strip line (DSPSL) resonator have been developed to measure the complex permittivity of typical PCBs in the vertical direction. The device includes the DSPSL resonator, the DSPSL coupling probe, a pressure monitor, a Farran C4209 vector network analyzer (100 K to 9 GHz), and a FEV-10-PR-0006 frequency multiplier (75-110 GHz). Based on transmission line theory, the physical model of the DSPSL resonator was established, and the relative permittivity and loss angle tangent value of the dielectric substrate were calculated using conformal transformation. To excite the resonator, the DSPSL coupling probe with a good transmission effect was designed, which consists of DSPSL microstrip line (MSL) transition structure and an MSL-WR10 rectangular waveguide converter. To reduce the air gap between the sample and the metal guide band and dielectric support block, and to improve test accuracy, a mechanical pressure device is added to the top of the DSPSL resonator. Based on the DSPSL resonator, we have used the device to test four typical PCBs, namely, polytetrafluoroethylene, Rogers RT/duroid®5880, Rogers RO3006®, and Rogers RO3010®. The results show that the maximum error of the relative permittivity is less than 3.05%, and the maximum error of the loss angle tangent is less than 1.27 × 10-4.

7.
Heliyon ; 10(12): e32304, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948033

ABSTRACT

Background: Several respiratory infections outbreaks have been observed in mainland China after reduction of non-pharmaceutical interventions. Other countries have seen increases in respiratory infections outside typical seasons post-COVID-19, warranting investigation into underlying causes. Methods: We established monitoring networks for suspected respiratory infection in 14 tertiary hospitals nationwide. PCR for SARS-CoV-2, influenza A and B were performed on 3708 respiratory specimens and deep sequencing were conducted to identify co-infections or newly emerging microbes in 2023. Viral evolutionary analysis was completed. We retrospectively detected serum antibody level for various respiratory pathogens from 4324 adults without respiratory infections over 7 years to observe its dynamic curves. Findings: SARS-CoV-2 and influenza A were the main pathogens during outbreaks in 2023, bacterial-virus and bacterial-bacterial co-infections were most detected, but community co-infections didn't significantly increase pneumonia incidence. Different SARS-CoV-2 and influenza variants were present in different outbreaks, and no novel pathogens were found. The epidemiological patterns of influenza A, COVID-19 and etc. were altered, exhibiting characteristics of being "staggered" compared to most global regions, and potentially led to "overlapping prevalence". Binding antibody testing showed regular fluctuation, without significant decrease against common respiratory pathogens in adults. Influenza A antibody stimulation was attenuated during the 2023 outbreak. Conclusions: "Misaligned" alteration in seasonal respiratory disease patterns possibly caused combined epidemics, leading to cases spike in China, 2023. In adults, antibody levels didn't show significant decline, but reduced immune response to influenza during 2020-2023 emphasizes the need for consistent vaccination during pandemics.

8.
Front Pharmacol ; 15: 1339758, 2024.
Article in English | MEDLINE | ID: mdl-38948458

ABSTRACT

Background: The escalation of global population aging has accentuated the prominence of senile diabetes mellitus (SDM) as a consequential public health concern. Oxidative stress and chronic inflammatory cascades prevalent in individuals with senile diabetes significantly amplify disease progression and complication rates. Traditional Chinese Medicine (TCM) emerges as a pivotal player in enhancing blood sugar homeostasis and retarding complication onset in the clinical management of senile diabetes. Nonetheless, an evident research gap persists regarding the integration of TCM's renal tonification pharmacological mechanisms with experimental validation within the realm of senile diabetes therapeutics. Aims: The objective of this study was to investigate the mechanisms of action of New Shenqi Pills (SQP) in the treatment of SDM and make an experimental assessment. Methods: Network analysis is used to evaluate target pathways related to SQP and SDM. Mitochondrial-related genes were obtained from the MitoCarta3.0 database and intersected with the common target genes of the disease and drugs, then constructing a protein-protein interaction (PPI) network making use of the GeneMANIA database. Representative compounds in the SQP were quantitatively measured using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to ensure quality control and quantitative analysis of the compounds. A type 2 diabetes mice (C57BL/6) model was used to investigate the pharmacodynamics of SQP. The glucose lowering efficacy of SQP was assessed through various metrics including body weight and fasting blood glucose (FBG). To elucidate the modulatory effects of SQP on pancreatic beta cell function, we measured oral glucose tolerance test (OGTT), insulin histochemical staining and tunel apoptosis detection, then assessed the insulin-mediated phosphoinositide 3-kinase (PI3K)/protein kinase A (Akt)/glycogen synthase kinase-3ß (GSK-3ß) pathway in diabetic mice via Western blotting. Additionally, we observe the structural changes of the nucleus, cytoplasmic granules and mitochondria of pancreatic islet ß cells. Results: In this investigation, we identified a total of 1876 genes associated with senile diabetes, 278 targets of SQP, and 166 overlapping target genes, primarily enriched in pathways pertinent to oxidative stress response, peptide response, and oxygen level modulation. Moreover, an intersection analysis involving 1,136 human mitochondrial genes and comorbidity targets yielded 15 mitochondria-related therapeutic targets. Quality control assessments and quantitative analyses of SQP revealed the predominant presence of five compounds with elevated concentrations: Catalpol, Cinnamon Aldehyde, Rehmanthin D, Trigonelline, and Paeonol Phenol. Vivo experiments demonstrated notable findings. Relative to the control group, mice in the model group exhibited significant increases in body weight and fasting blood glucose levels, alongside decreased insulin secretion and heightened islet cell apoptosis. Moreover, ß-cells nuclear condensation and mitochondrial cristae disappearance were observed, accompanied by reduced expression levels of p-GSK-3ß protein in islet cells (p < 0.05 or p < 0.01). Conversely, treatment groups administered SQP and Rg displayed augmented expressions of the aforementioned protein markers (p < 0.05 or p < 0.01), alongside preserved mitochondrial cristae structure in islet ß cells. Conclusion: Our findings suggest that SQP can ameliorate diabetes by reducing islet cell apoptosis and resist oxidative stress. These insulin-mediated PI3K/AKT/GSK-3ß pathway plays an important regulatory role in this process.

9.
Cardiovasc Diabetol ; 23(1): 226, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951808

ABSTRACT

BACKGROUND: The atherogenic index of plasma (AIP) is closely associated with the onset of diabetes, with obesity being a significant risk factor for type 2 diabetes mellitus (T2DM). However, the association between the AIP and T2DM in overweight and obese populations has been infrequently studied. Therefore, this study aimed to explore this association in overweight and obese individuals with T2DM. METHODS: This cross-sectional analysis utilized data from 40,633 participants with a body mass index (BMI) ≥ 24 kg/m2 who were screened from January 2018 to December 2023 at Henan Provincial People's Hospital. Participants were categorized into groups of overweight and obese individuals with and without diabetes according to the T2DM criteria. The AIP, our dependent variable, was calculated using the formula log10 [(TG mol/L)/HDL-C (mol/L)]. We investigated the association between the AIP and T2DM in overweight and obese individuals using multivariate logistic regression, subgroup analysis, generalized additive models, smoothed curve fitting, and threshold effect analysis. Additionally, mediation analysis evaluated the role of inflammatory cells in AIP-related T2DM. RESULTS: Overweight and obese patients with T2DM exhibited higher AIP levels than those without diabetes. After adjusting for confounders, our results indicated a significant association between the AIP and the risk of T2DM in overweight and obese individuals (odds ratio (OR) = 5.17, 95% confidence interval (CI) 4.69-5.69). Notably, participants with a high baseline AIP (Q4 group) had a significantly greater risk of T2DM than those in the Q1 group, with an OR of 3.18 (95% CI 2.94-3.45). Subgroup analysis revealed that the association between the AIP and T2DM decreased with increasing age (interaction P < 0.001). In overweight and obese populations, the association between AIP and T2DM risk displayed a J-shaped nonlinear pattern, with AIP > - 0.07 indicating a significant increase in T2DM risk. Various inflammatory cells, including neutrophils, leukocytes, and monocytes, mediated 4.66%, 4.16%, and 1.93% of the associations, respectively. CONCLUSION: In overweight and obese individuals, the AIP was independently associated with T2DM, exhibiting a nonlinear association. Additionally, the association between the AIP and T2DM decreased with advancing age. Multiple types of inflammatory cells mediate this association.


Subject(s)
Biomarkers , Diabetes Mellitus, Type 2 , Obesity , Adult , Aged , Female , Humans , Male , Middle Aged , Atherosclerosis/epidemiology , Atherosclerosis/blood , Atherosclerosis/diagnosis , Biomarkers/blood , Body Mass Index , China/epidemiology , Cholesterol, HDL/blood , Cross-Sectional Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , East Asian People , Obesity/diagnosis , Obesity/blood , Obesity/epidemiology , Overweight/epidemiology , Overweight/blood , Overweight/diagnosis , Overweight/complications , Prognosis , Risk Assessment , Risk Factors , Triglycerides/blood
10.
Front Oncol ; 14: 1288041, 2024.
Article in English | MEDLINE | ID: mdl-38962263

ABSTRACT

Background: Small Bowel Adenocarcinoma (SBA) is rare, occult and life-threatening malignancy in digestive system. Given low incidence and nonspecific symptoms, SBA is frequently detected in later stages. Double contrast enhanced ultrasound (DCEUS) is an innovative imaging technique applied to visualize the gastrointestinal tract, merging intravenous contrast-enhanced ultrasound with oral contrast-enhanced ultrasound. In this case, DCEUS was utilized and successfully detected an SBA of the jejunum. Case presentation: A Chinese woman, aged 64, sought consultation in the gastroenterology department at our hospital, reporting symptoms of abdominal pain. Three months before entering the hospital, she underwent gastroscopy and colonoscopy which suggested chronic gastritis, and she was treated with oral drugs. However, her symptoms were not relieved, and even worsened. To further investigate, DCEUS was performed. The oral contrast agent dilated the luminal space of the upper gastrointestinal tract, resolving the hindrance caused by gas in the gastrointestinal tract and creating an acoustic window for scanning. Through this acoustic window, oral agent contrast-enhanced ultrasound (OA-CEUS) revealed a localized thickening of jejunal intestinal wall measuring 4x3 cm. Following intravenous injection of ultrasound contrast agent, the jejunal lesion exhibited faster enhancement and heterogeneous hyper-enhancement. Finally, the patient underwent jejunal tumor resection. Pathological examination revealed a jejunal adenocarcinoma. Conclusion: The timely diagnosis of SBA can be challenging. DCEUS may have the potential to contribute to diagnosis and detailed evaluation of SBA, particularly in cases involving jejunum. Further researches are needed to fully explore the benefits of DCEUS in the standard diagnostic approach for small bowel diseases.

11.
Adv Biol (Weinh) ; : e2400224, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963310

ABSTRACT

The maintenance and expansion of human neural stem cells (hNSCs) in 3D tissue scaffolds is a promising strategy in producing cost-effective hNSCs with quality and quantity applicable for clinical applications. A few biopolymers have been extensively used to fabricate 3D scaffolds, including hyaluronic acid, collagen, alginate, and chitosan, due to their bioactive nature and availability. However, these polymers are usually applied in combination with other biomolecules, leading to their responses difficult to ascribe to. Here, scaffolds made of chitosan, alginate, hyaluronic acid, or collagen, are explored for hNSC expansion under xeno-free and chemically defined conditions and compared for hNSC multipotency maintenance. This study shows that the scaffolds made of pure chitosan support the highest adhesion and growth of hNSCs, yielding the most viable cells with NSC marker protein expression. In contrast, the presence of alginate, hyaluronic acid, or collagen induces differentiation toward immature neurons and astrocytes even in the maintenance medium and absence of differentiation factors. The cells in pure chitosan scaffolds preserve the level of transmembrane protein profile similar to that of standard culture. These findings point to the potential of using pure chitosan scaffolds as a base scaffolding material for hNSC expansion in 3D.

12.
Balkan Med J ; 41(4): 286-297, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966918

ABSTRACT

Background: Cannabidiol (CBD), extracted from Cannabis sativa, has anticancer, anti-inflammation, and analgesic effects. Nevertheless, its therapeutic effect and the mechanism by which it alleviates oral mucositis (OM) remain unclear. Aims: To explore the impact of CBD on OM in mice and on human oral keratinocyte (HOK) cells. Study Design: Expiremental study. Methods: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, GeneCard, DisGeNET, and Gene Expression Omnibus databases were used to conduct therapeutic target gene screening for drugs against OM. Cytoscape software was used to build networks linking components, targets, and diseases. The STRING database facilitated analysis of intertarget action relationships, and the target genes were analyzed for Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Occurrence of serum inflammation-related factors, hematoxylin and eosin staining, and immunohistochemistry were used to assess OM injury. Cell proliferation, migration, pyroptosis, and apoptosis of HOK cells under different treatments were assessed. Molecular mechanisms were elucidated through western blot and quantitative real-time polymerase chain reaction analyses. Results: A total of 49 overlapping genes were pinpointed as potential targets, with NF-κB1, PIK3R1, NF-κBIA, and AKT1 being recognized as hub genes among them. Additionally, the PI3K/Akt/NF-κB and interleukin-17 signaling pathways were identified as relevant. Our in vivo experiments showed that CBD significantly reduced the proportion of lesion area, mitigated oral mucosal tissue lesions, and downregulated the expression levels of genes and levels of proteins, including NLRP3, P65, AKT, and PI3K. In vitro experiments indicated that CBD enhanced HOK cell proliferation and migration and reduced apoptosis through inhibition of the PI3K/Akt/NF-κB signaling pathway and pyroptosis. Conclusion: Our findings suggest a novel mechanism for controlling OM, in which CBD suppresses the PI3K/Akt/NF-κB signaling pathway and pyroptosis, thereby mitigating OM symptoms.


Subject(s)
Cannabidiol , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Pyroptosis , Stomatitis , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Animals , Pyroptosis/drug effects , Mice , Stomatitis/drug therapy , NF-kappa B/drug effects , NF-kappa B/analysis , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Humans , Signal Transduction/drug effects , Disease Models, Animal
13.
Adv Sci (Weinh) ; : e2401869, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959395

ABSTRACT

Ionic conductive hydrogels (ICHs) have recently gained prominence in biosensing, indicating their potential to redefine future biomedical applications. However, the integration of these hydrogels into sensor technologies and their long-term efficacy in practical applications pose substantial challenges, including a synergy of features, such as mechanical adaptability, conductive sensitivity, self-adhesion, self-regeneration, and microbial resistance. To address these challenges, this study introduces a novel hydrogel system using an imidazolium salt with a ureido backbone (UL) as the primary monomer. Fabricated via a straightforward one-pot copolymerization process that includes betaine sulfonate methacrylate (SBMA) and acrylamide (AM), the hydrogel demonstrates multifunctional properties. The innovation of this hydrogel is attributed to its robust mechanical attributes, outstanding strain responsiveness, effective water retention, and advanced self-regenerative and healing capabilities, which collectively lead to its superior performance in various applications. Moreover, this hydrogel  exhibited broad-spectrum antibacterial activity. Its potential for biomechanical monitoring, especially in tandem with contact and noncontact electrocardiogram (ECG) devices, represents a noteworthy advancement in precise real-time cardiac monitoring in clinical environments. In addition, the conductive properties of the hydrogel make it an ideal substrate for electrophoretic patches aimed at treating infected wounds and consequently enhancing the healing process.

14.
Sci Rep ; 14(1): 13393, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862634

ABSTRACT

To investigate the factors that influence readmissions in patients with acute non-ST elevation myocardial infarction (NSTEMI) after percutaneous coronary intervention (PCI) by using multiple machine learning (ML) methods to establish a predictive model. In this study, 1576 NSTEMI patients who were hospitalized at the Affiliated Hospital of North Sichuan Medical College were selected as the research subjects. They were divided into two groups: the readmitted group and the non-readmitted group. The division was based on whether the patients experienced complications or another incident of myocardial infarction within one year after undergoing PCI. Common variables selected by univariate and multivariate logistic regression, LASSO regression, and random forest were used as independent influencing factors for NSTEMI patients' readmissions after PCI. Six different ML models were constructed using these common variables. The area under the ROC curve, accuracy, sensitivity, and specificity were used to evaluate the performance of the six ML models. Finally, the optimal model was selected, and a nomogram was created to visually represent its clinical effectiveness. Three different methods were used to select seven representative common variables. These variables were then utilized to construct six different ML models, which were subsequently compared. The findings indicated that the LR model exhibited the most optimal performance in terms of AUC, accuracy, sensitivity, and specificity. The outcome, admission mode (walking and non-walking), communication ability, CRP, TC, HDL, and LDL were identified as independent predicators of readmissions in NSTEMI patients after PCI. The prediction model constructed by the LR algorithm was the best. The established column graph model established proved to be effective in identifying high-risk groups with high accuracy and differentiation. It holds a specific predictive value for the occurrence of readmissions after direct PCI in NSTEMI patients.


Subject(s)
Machine Learning , Non-ST Elevated Myocardial Infarction , Patient Readmission , Percutaneous Coronary Intervention , Humans , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Patient Readmission/statistics & numerical data , Male , Female , Non-ST Elevated Myocardial Infarction/surgery , Middle Aged , Aged , Risk Factors , Risk Assessment/methods , ROC Curve
15.
Eur J Med Chem ; 275: 116558, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38870833

ABSTRACT

The aberrant activation of FGFRs plays a critical role in various cancers, leading to the development of several FGFR inhibitors in clinic. However, the emergence of drug resistance, primarily due to gatekeeper mutations in FGFRs, has limited their clinical efficacy. To address the unmet medical need, a series of 5-amino-1H-pyrazole-4-carboxamide derivatives were designed and synthesized as novel pan-FGFR covalent inhibitors targeting both wild-type and the gatekeeper mutants. The representative compound 10h demonstrated nanomolar activities against FGFR1, FGFR2, FGFR3 and FGFR2 V564F gatekeeper mutant in biochemical assays (IC50 = 46, 41, 99, and 62 nM). Moreover, 10h also strongly suppressed the proliferation of NCI-H520 lung cancer cells, SNU-16 and KATO III gastric cancer cells with IC50 values of 19, 59, and 73 nM, respectively. Further X-ray co-crystal structure revealed that 10h irreversibly binds to FGFR1. The study provides a new promising point for anticancer drug development medicated by FGFRs.

16.
Oncol Ther ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879734

ABSTRACT

In human leukocyte antigen (HLA)-mismatched allogeneic stem cell transplantation settings, donor-specific anti-HLA antibodies (DSAs) can independently lead to graft failure, including both primary graft rejection and primary poor graft function. Although several strategies, such as plasma exchange, intravenous immunoglobulin, rituximab, and bortezomib, have been used for DSA desensitization, the effectiveness of desensitization and transplantation outcomes in some patients remain unsatisfactory. In this review, we summarized recent research on the prevalence of anti-HLA antibodies and the underlying mechanism of DSAs in the pathogenesis of graft failure. We mainly focused on desensitization strategies for DSAs, especially novel methods that are being investigated in the preclinical stage and those with promising outcomes after preliminary clinical application.

17.
Mediterr J Hematol Infect Dis ; 16(1): e2024036, 2024.
Article in English | MEDLINE | ID: mdl-38882453

ABSTRACT

The aim of this study was to investigate the prognostic factors of haploid hematopoietic stem cell transplantation in the treatment of X-linked lymphoproliferative syndrome. Seven children with X-linked lymphoproliferative syndrome diagnosed by XIAP gene analysis were enrolled. The conditioning regimens were tolerated in all seven patients, and the median time of neutrophil engraftment was 10 days (8-13 days), and that of platelet engraftment was 21 days (14-24 days). STR-PCR analysis on the peripheral blood cells showed complete donor origins. Four cases developed Grade I acute graft versus host disease (aGVHD), one developed Grade III aGVHD (intestinal tract), and two cases had limited chronic GVHD. Four cases had cytomegalovirus (CMV) reactivation, and two cases had Epstein-Barr virus (EBV) reactivation. One case was diagnosed as pneumocystosis, and thrombotic microangiopathy (TMA) occurred in three cases. During the follow-up period (median time of 42 months), one patient died of TMA and six patients survived. Statistical analysis showed that the status of disease remission and the positive result of virus in blood before transplantation were independent prognostic factors. Haplo-HSCT might be a curative option for children with refractory X-linked lymphoproliferative syndrome. Low-intensity conditioning regimens may reduce transplant-related mortality and improve overall survival.

18.
Vet Microbiol ; 295: 110136, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38875877

ABSTRACT

This study aimed to analyze the species and abundance of viruses carried by avian species in live poultry markets. In 2022, we collected 196 bird samples from two representative live poultry markets in Guangdong, China, of which 147 were randomly selected for metatranscriptome sequencing to construct a metatranscriptome library. This analysis yielded 17 viral families. Statistical analysis of the virus abundance of the six libraries showed that Picornaviridae, Retroviridae, Coronaviridae, and Othomyxoviridae were more abundant in the J1, J2, and J3 libraries, and Coronaviridae, Retroviridae, and Faviviridae were more abundant in the Y1, Y2, and E1 libraries. Finally, samples were screened using nested PCR and three viruses were identified. The positive results combined with high-throughput sequencing abundance data showed a positive correlation between virus abundance and the number of positive samples. This study provides scientific data to support the diagnosis and prevention of avian viral diseases.

19.
Orthop Surg ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946017

ABSTRACT

Fractures and bone nonunion commonly require surgical intervention. Serious outcomes of non-healing in the late stages of fracture place a significant financial burden on society and families. Bone nonunion occurs when a fracture stops healing, for many reasons, and leads to a variety of bad outcomes. Numerous factors, including biomechanics and immunology, are involved in the complicated mechanisms of bone nonunion. The immune-inflammatory response plays a significant part in the emergence of bone nonunion, and the occurrence, control, and remission of inflammation in the bone healing process have a significant influence on the ultimate success of bone tissue repair. In the bone microenvironment, immune cells and associated cytokines control bone repair, which is significantly influenced by macrophages, T cells, and fibroblast growth factor. To limit acute inflammation and  balance osteogenesis and osteoblastogenesis for tissue repair and regeneration, immune cells and various cytokines in the local microenvironment must be precisely regulated. As a bad complication of late-stage fractures, bone nonunion has a significant effect on patients' quality of life and socioeconomic development. Therefore, in-depth research on its pathogenesis and treatment methods has important clinical value. To provide more precise, focused therapeutic options for the treatment of bone nonunion, we discuss the regulatory roles of the key immune cells engaged in bone healing within the microenvironment during bone healing and their effect on osteogenesis.

20.
Commun Biol ; 7(1): 781, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944651

ABSTRACT

Macrolide antibiotics, pivotal in clinical therapeutics, are confronting resistance challenges mediated by enzymes like macrolide esterases, which are classified into Ere-type and the less studied Est-type. In this study, we provide the biochemical confirmation of EstX, an Est-type macrolide esterase that initially identified as unknown protein in the 1980s. EstX is capable of hydrolyzing four 16-membered ring macrolides, encompassing both veterinary (tylosin, tidipirosin, and tilmicosin) and human-use (leucomycin A5) antibiotics. It uses typical catalytic triad (Asp233-His261-Ser102) from alpha/beta hydrolase superfamily for ester bond hydrolysis. Further genomic context analysis suggests that the dissemination of estX is likely facilitated by mobile genetic elements such as integrons and transposons. The global distribution study indicates that bacteria harboring the estX gene, predominantly pathogenic species like Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae, are prevalent in 74 countries across 6 continents. Additionally, the emergence timeline of the estX gene suggests its proliferation may be linked to the overuse of macrolide antibiotics. The widespread prevalence and dissemination of Est-type macrolide esterase highlight an urgent need for enhanced monitoring and in-depth research, underlining its significance as an escalating public health issue.


Subject(s)
Esterases , Esterases/genetics , Esterases/metabolism , Esterases/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Macrolides/metabolism , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Phylogeny , Hydrolases/genetics , Hydrolases/metabolism , Hydrolases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...