Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Animals (Basel) ; 12(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35883342

ABSTRACT

Selection for the number of living pigs on day 11 (L11) aims to reduce piglet mortality and increase litter size simultaneously. This approach could be sub-optimal, especially for organic pig breeding. This study evaluated the effect of selecting for a trait by separating it into two traits. Genetic parameters for L11, the total number born (TNB), and the number of dead piglets at day 11 (D11) were estimated using data obtained from an organic pig population in Denmark. Based on these estimates, two alternative breeding schemes were simulated. Specifically, selection was made using: (1) a breeding goal with L11 only versus (2) a breeding goal with TNB and D11. Different weightings for TNB and D11 were tested. The simulations showed that selection using the first breeding scheme (L11) produced lower annual genetic gain (0.201) compared to the second (TNB and D11; 0.207). A sensitivity analysis showed that the second scheme performed better because it exploited differences in heritability, and accounted for genetic correlations between the two traits. When the second breeding scheme placed more emphasis on D11, D11 declined, whereas genetic gain for L11 remained high (0.190). In conclusion, selection for L11 could be optimized by separating it into two correlated traits with different heritability, reducing piglet mortality and enhancing L11.

2.
Animal ; 16(5): 100529, 2022 May.
Article in English | MEDLINE | ID: mdl-35483172

ABSTRACT

Piglet mortality from farrowing to weaning is a major concern, especially in outdoor organic production systems. This issue might impair animal welfare and generate economic losses for the farmer. In particular, it is difficult to apply management tools that are commonly used for indoor pig production systems to organic or outdoor production systems. Genetics and breeding approaches might be used to improve piglet survival. However, knowledge remains limited on the genetic background underlying survival traits in organic pigs that are born and reared outdoors. Here, we investigated the mortality of piglets from farrowing to weaning in an outdoor organic pig population and suggested genetic strategies to reduce piglet mortality in this production system. The experiment included mortality records of piglets from farrowing to weaning (around 69 days of age). Pedigree-based threshold models were used to analyse the mortality traits of piglets at 0-3 days of age, 4-11 days, and 12 days to weaning. Stillborn piglets were included in the group of piglets that died at 0-3 days of age. We found that the mortality rate from farrowing to weaning was, on average, 19.2%. However, most piglet deaths (79.1%) occurred at 0-11 days of age. As the age of piglets increased, the direct heritability of piglet mortality rose from 0 to 0.04, whereas maternal heritability decreased from 0.03 to a non-significant value. Piglets with higher BW had a lower mortality rate. However, the genetic correlations between maternal effects on piglet mortality and piglet BW were not significant; thus, selection for piglets with higher BW at around 10 days of age, through improving maternal genetics, would not reduce piglet mortality. Piglet mortality increased from sows with increasing number of parities. Crossbreeding also reduced piglet mortality. In conclusion, selection focusing on sow genotype, the use of younger sows, and crossbreeding could contribute to maintain piglet mortality at lower levels in outdoor organic pig production systems.


Subject(s)
Animal Welfare , Parturition , Animals , Animals, Newborn , Female , Genetic Variation , Litter Size , Pregnancy , Swine/genetics , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL