Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 205(12): 3400-3407, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33188071

ABSTRACT

IgG Abs are crucial for various immune functions, including neutralization, phagocytosis, and Ab-dependent cellular cytotoxicity. In this study, we identified another function of IgG by showing that IgG immune complexes elicit distinct cytokine profiles by human myeloid immune cells, which are dependent on FcγR activation by the different IgG subclasses. Using monoclonal IgG subclasses with identical Ag specificity, our data demonstrate that the production of Th17-inducing cytokines, such as TNF, IL-1ß, and IL-23, is particularly dependent on IgG2, whereas type I IFN responses are controlled by IgG3, and IgG1 is able to regulate both. In addition, we identified that subclass-specific cytokine production is orchestrated at the posttranscriptional level through distinct glycolytic reprogramming of human myeloid immune cells. Combined, these data identify that IgG subclasses provide pathogen- and cell type-specific immunity through differential metabolic reprogramming by FcγRs. These findings may be relevant for future design of Ab-related therapies in the context of infectious diseases, chronic inflammation, and cancer.


Subject(s)
Cytokines/immunology , Immunoglobulin G/immunology , Myeloid Cells/immunology , Receptors, IgG/immunology , Humans , Myeloid Cells/cytology
2.
Nat Commun ; 9(1): 863, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29491406

ABSTRACT

CD103+ dendritic cells (DC) are crucial for regulation of intestinal tolerance in humans. However, upon infection of the lamina propria this tolerogenic response is converted to an inflammatory response. Here we show that immunoglobulin A (IgA) immune complexes (IgA-IC), which are present after bacterial infection of the lamina propria, are important for the induction of inflammation by the human CD103+SIRPα+ DC subset. IgA-IC, by recognition through FcαRI, selectively amplify the production of proinflammatory cytokines TNF, IL-1ß and IL-23 by human CD103+ DCs. These cells then enhance inflammation by promoting Th17 responses and activating human intestinal innate lymphoid cells 3. Moreover, FcαRI-induced cytokine production is orchestrated via upregulation of cytokine translation and caspase-1 activation, which is dependent on glycolytic reprogramming mediated by kinases Syk, PI3K and TBK1-IKKε. Our data suggest that the formation of IgA-IC in the human intestine provides an environmental cue for the conversion of a tolerogenic to an inflammatory response.


Subject(s)
Antigens, CD/immunology , Dendritic Cells/immunology , Integrin alpha Chains/immunology , Intestines/immunology , Receptors, Fc/immunology , Cellular Reprogramming , Glycolysis , Humans , Immunoglobulin A/immunology , Interleukin-1beta/immunology , Interleukin-23/immunology , Intestines/cytology , Th17 Cells/immunology
3.
J Immunol ; 199(12): 4124-4131, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29118246

ABSTRACT

IgA is predominantly recognized to play an important role in host defense at mucosal sites, where it prevents invasion of pathogens by neutralization. Although it has recently become clear that IgA also mediates other immunological processes, little remains known about the potential of IgA to actively contribute to induction of inflammation, particularly in nonmucosal organs and tissues. In this article, we provide evidence that immune complex formation of serum IgA plays an important role in orchestration of inflammation in response to pathogens at various nonmucosal sites by eliciting proinflammatory cytokines by human macrophages, monocytes, and Kupffer cells. We show that opsonization of bacteria with serum IgA induced cross-talk between FcαRI and different TLRs, leading to cell type-specific amplification of proinflammatory cytokines, such as TNF-α, IL-1ß, IL-6, and IL-23. Furthermore, we demonstrate that the increased protein production of cytokines was regulated at the level of gene transcription, which was dependent on activation of kinases Syk and PI3K. Taken together, these data demonstrate that the immunological function of IgA is substantially more extensive than previously considered and suggest that serum IgA-induced inflammation plays an important role in orchestrating host defense by different cell types in nonmucosal tissues, including the liver, skin, and peripheral blood.


Subject(s)
Antigen-Antibody Complex/immunology , Antigens, CD/immunology , Cytokines/biosynthesis , Immunoglobulin A/immunology , Inflammation/immunology , Kupffer Cells/immunology , Macrophages/immunology , Monocytes/immunology , Receptor Cross-Talk/immunology , Receptors, Fc/immunology , Toll-Like Receptors/immunology , Cytokines/genetics , Enzyme Activation , Humans , Immunoglobulin A/blood , Inflammation/etiology , Opsonin Proteins/immunology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Processing, Post-Translational , Syk Kinase/metabolism , Transcription, Genetic
4.
J Aerosol Med Pulm Drug Deliv ; 30(2): 91-99, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27977318

ABSTRACT

BACKGROUND: Critically ill patients are at a constant risk of direct (e.g., by pneumonia) or indirect lung injury (e.g., by sepsis). Excessive alveolar fibrin deposition is a prominent feature of lung injury, undermining pulmonary integrity and function. METHODS: We examined the effect of local administration of recombinant human tissue factor pathway inhibitor (rh-TFPI), a natural anticoagulant, in two well-established models of lung injury in rats. Rats received intratracheal instillation of Pseudomonas aeruginosa, causing direct lung injury, or they received an intravenous injection of Escherichia coli lipopolysaccharide (LPS), causing indirect lung injury. Rats were randomized to local treatment with rh-TFPI or placebo through repeated nebulization. RESULTS: Challenge with P. aeruginosa or LPS was associated with increased coagulation and decreased fibrinolysis in bronchoalveolar lavage fluid (BALF) and plasma. Rh-TFPI levels in BALF increased after nebulization, whereas plasma rh-TFPI levels remained low and systemic TFPI activity was not affected. Nebulization of rh-TFPI attenuated pulmonary and systemic coagulation in both models, without affecting fibrinolysis. Nebulization of rh-TFPI modestly reduced the inflammatory response and bacterial growth of P. aeruginosa in the alveolar compartment. CONCLUSIONS: Local treatment with rh-TFPI does not alter systemic TFPI activity; however, it attenuates both pulmonary and systemic coagulopathy. Furthermore, nebulized rh-TFPI modestly reduces the pulmonary inflammatory response and allows increased bacterial clearance in rats with direct lung injury caused by P. aeruginosa.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Anticoagulants/pharmacology , Lipoproteins/pharmacology , Lung Injury/drug therapy , Animals , Anti-Inflammatory Agents/administration & dosage , Anticoagulants/administration & dosage , Blood Coagulation/drug effects , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Fibrinolysis/drug effects , Humans , Inflammation/drug therapy , Lipopolysaccharides/toxicity , Lipoproteins/administration & dosage , Lung Injury/pathology , Male , Pseudomonas aeruginosa , Random Allocation , Rats , Rats, Sprague-Dawley , Recombinant Proteins
5.
Blood ; 120(1): 112-21, 2012 Jul 05.
Article in English | MEDLINE | ID: mdl-22649103

ABSTRACT

Dendritic cells (DCs) are essential in inducing adaptive immune responses against bacteria by expressing cytokines that skew T-cell responses toward protective Th17 cells. Although it is widely recognized that induction of these cytokines by DCs involves activation of multiple receptors, it is still incompletely characterized which combination of receptors specifically skews Th17-cell responses. Here we have identified a novel role for FcγRIIa in promoting human Th17 cells. Activation of DCs by bacteria opsonized by serum IgG strongly promoted Th17 responses, which was FcγRIIa-dependent and coincided with enhanced production of selected cytokines by DCs, including Th17-promoting IL-1ß and IL-23. Notably, FcγRIIa stimulation on DCs did not induce cytokine production when stimulated individually, but selectively amplified cytokine responses through synergy with TLR2, 4, or 5. Importantly, this synergy is mediated at 2 different levels. First, TLR-FcγRIIa costimulation strongly increased transcription of pro-IL-1ß and IL-23p19. Second, FcγRIIa triggering induced activation of caspase-1, which cleaves pro-IL-1ß into its bioactive form and thereby enhanced IL-1ß secretion. Taken together, these data identified cross-talk between TLRs and FcγRIIa as a novel mechanism by which DCs promote protective effector Th17-cell responses against bacteria.


Subject(s)
Bacterial Infections/immunology , Dendritic Cells/immunology , Immunoglobulin G/immunology , Receptors, IgG/immunology , Th17 Cells/immunology , Toll-Like Receptors/immunology , Adaptive Immunity/immunology , Cell Communication/immunology , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/cytology , Dendritic Cells/microbiology , Escherichia coli/immunology , Escherichia coli Infections/immunology , Humans , Ligands , Macrophages/cytology , Macrophages/immunology , Macrophages/microbiology , Receptor Cross-Talk/immunology , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Staphylococcus epidermidis/immunology , Th17 Cells/cytology , Th17 Cells/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...