Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 700, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027600

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a mosquito borne alphavirus which leads to high viremia in equines followed by lethal encephalitis and lateral spread to humans. In addition to naturally occurring outbreaks, VEEV is a potential biothreat agent with no approved human vaccine or therapeutic currently available. Single domain antibodies (sdAb), also known as nanobodies, have the potential to be effective therapeutic agents. Using an immune phage display library derived from a llama immunized with an equine vaccine that included inactivated VEEV, five sdAb sequence families were identified that showed varying ability to neutralize VEEV. One of the sequence families had been identified previously in selections against chikungunya virus, a related alphavirus of public health concern. A key advantage of sdAb is the ability to optimize properties such as neutralization capacity through protein engineering. Neutralization of VEEV was improved by two orders of magnitude by genetically linking sdAb. One of the bivalent constructs showed effective neutralization of both VEEV and chikungunya virus. Several of the bivalent constructs neutralized VEEV in cell-based assays with reductions in the number of plaques by 50% at protein concentrations of 1 ng/mL or lower, making future evaluation of their therapeutic potential compelling.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Encephalitis Virus, Venezuelan Equine/immunology , Encephalomyelitis, Venezuelan Equine/prevention & control , Encephalomyelitis, Venezuelan Equine/virology , Horse Diseases/prevention & control , Horse Diseases/virology , Single-Domain Antibodies/therapeutic use , Animals , Antibodies, Neutralizing/pharmacology , Horses , Humans , Protein Engineering , Single-Domain Antibodies/pharmacology
2.
Front Microbiol ; 12: 725727, 2021.
Article in English | MEDLINE | ID: mdl-34659152

ABSTRACT

New methods for antimicrobial design are critical for combating pathogenic bacteria in the post-antibiotic era. Fortunately, competition within complex communities has led to the natural evolution of antimicrobial peptide (AMP) sequences that have promising bactericidal properties. Unfortunately, the identification, characterization, and production of AMPs can prove complex and time consuming. Here, we report a peptide generation framework, PepVAE, based around variational autoencoder (VAE) and antimicrobial activity prediction models for designing novel AMPs using only sequences and experimental minimum inhibitory concentration (MIC) data as input. Sampling from distinct regions of the learned latent space allows for controllable generation of new AMP sequences with minimal input parameters. Extensive analysis of the PepVAE-generated sequences paired with antimicrobial activity prediction models supports this modular design framework as a promising system for development of novel AMPs, demonstrating controlled production of AMPs with experimental validation of predicted antimicrobial activity.

3.
Front Med (Lausanne) ; 8: 626028, 2021.
Article in English | MEDLINE | ID: mdl-33585527

ABSTRACT

A single domain antibody (clone CC3) previously found to neutralize a vaccine strain of the chikungunya virus (PRNT50 = 2. 5 ng/mL) was found to be broadly neutralizing. Clone CC3 is not only able to neutralize a wild-type (WT) strain of chikungunya virus (CHIKV), but also neutralizes WT strains of Mayaro virus (MAYV) and Ross River virus (RRV); both arthralgic, Old World alphaviruses. Interestingly, CC3 also demonstrated a degree of neutralizing activity against the New World alphavirus, Venezuelan equine encephalitis virus (VEEV); albeit both the vaccine strain, TC-83, and the parental, WT Trinidad donkey strain had PRNT50 values ~1,000-fold higher than that of CHIKV. However, no neutralization activity was observed with Western equine encephalitis virus (WEEV). Ten CC3 variants designed to possess a range of isoelectric points, both higher and lower, were constructed. This approach successfully identified several lower pI mutants which possessed improved thermal stabilities by as much as 10°C over the original CC3 (Tm = 62°C), and excellent refolding abilities while maintaining their capacity to bind and neutralize CHIKV.

4.
Protein Sci ; 28(10): 1909-1912, 2019 10.
Article in English | MEDLINE | ID: mdl-31342597

ABSTRACT

Recently Bekker et al. [Bekker G-J et al. Protein Sci. 2019;28:429-438.] described a computational strategy of applying molecular-dynamics simulations to estimate the relative stabilities of single-domain antibodies, and utilized their method to design changes with the aim of increasing the stability of a single-domain antibody with a known crystal structure. The structure from which they generated potentially stabilizing mutations is an anti-cholera toxin single domain antibody selected from a naïve library which has relatively low thermal stability, reflected by a melting point of 48°C. Their work was purely theoretical, so to examine their predictions, we prepared the parental and predicted stabilizing mutant single domain antibodies and examined their thermal stability, ability to refold and affinity. We found that the mutation that improved stability the most (~7°C) was one which changed an amino acid in CDR1 from an asparagine to an aspartic acid. This change unfortunately was also accompanied by a reduction in affinity. Thus, while their modeling did appear to successfully predict stabilizing mutations, introducing mutations in the binding regions is problematic. Of further interest, the mutations selected via their high temperature simulations, did improve refolding, suggesting that they were successful in stabilizing the structure at high temperatures and thereby decrease aggregation. Our result should permit them to reassess and refine their model and may one day lead to a usefulin silico approach to protein stabilization.


Subject(s)
Molecular Dynamics Simulation , Single-Domain Antibodies/chemistry , Temperature , Models, Molecular , Mutation , Protein Aggregates , Protein Stability , Single-Domain Antibodies/genetics
5.
Anal Chem ; 91(15): 9424-9429, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31313917

ABSTRACT

Single-domain antibodies (sdAb), recombinantly produced variable heavy domains derived from the unconventional heavy chain antibodies found in camelids, provide stable, well-expressed binding elements with excellent affinity that can be tailored for specific applications through protein engineering. Complex matrices, such as plasma and serum, can dramatically reduce assay sensitivity. Thus, to achieve highly sensitive detection in complex matrices a highly efficient assay is essential. We produced sdAb as genetically linked dimers, and trimers, each including SpyTag at their C-terminus. The constructs were immobilized onto dyed magnetic microspheres to which SpyCatcher had been coupled and characterized in terms of their performance as capture reagents in sandwich assays. Initial tests on the ability of oriented monomer, dimer, and trimer captures to improve detection versus unoriented constructs in an assay for staphylococcal enterotoxin B spiked into buffer showed the oriented dimer format provided the best sensitivity while offering robust protein production. Thus, this format was utilized to improve a sdAb-based assay for the detection of dengue virus (DENV) nonstructural protein 1 (NS1) in serum. Detection of NS1 from each of the four DENV serotypes spiked into 50% normal human serum was increased by at least a factor of 5 when using the oriented dimer capture. We then demonstrated the potential of using the oriented dimer capture to improve detection of NS1 in clinical samples. This general method should enhance the utility of sdAb incorporated into any diagnostic assay, including those for high consequence pathogens.


Subject(s)
Antibodies, Immobilized/immunology , Immunoassay/methods , Orientation, Spatial , Peptides/chemistry , Single-Domain Antibodies/immunology , Immunoassay/standards , Limit of Detection , Microspheres , Protein Multimerization , Viral Nonstructural Proteins/blood
6.
Mol Immunol ; 105: 190-197, 2019 01.
Article in English | MEDLINE | ID: mdl-30550981

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes an arthralgia febrile illness that has affected millions of people on three continents. Previously, neutralizing monoclonal antibodies that have prophylactic and therapeutic activity were found to remove virus in joint tissues, thereby reducing the severity of symptoms in mice and non-human primates. In this study, we sought to develop thermostable small recombinant antibodies against CHIKV for future diagnostic, prophylactic and therapeutic applications. To develop these single domain antibodies (sdAb) a CHIKV immune library was constructed by displaying the consortium of variable heavy domains (VHH) amplified from peripheral white blood cells isolated from llamas immunized with CHIKV virus-like particles (VLPs). Five anti-CHIKV sdAb isolated using bio-panning were evaluated for their affinity and thermal stability. Their ability to detect CHIKV VLPs was demonstrated in both MagPlex- and ELISA- based assays. Finally, the ability of two sdAb, CC3 and CA6, to inhibit CHIKV infection were tested using a plaque reduction and neutralization test (PRNT), yielding PRNT50 values of 0.6 and 45.6 nM, respectively.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chikungunya virus/immunology , Single-Chain Antibodies/immunology , Single-Domain Antibodies/immunology , Vaccines, Virus-Like Particle/immunology , Animals , Camelids, New World , HEK293 Cells , Humans , Immunization
7.
Sci Rep ; 8(1): 18086, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30591706

ABSTRACT

Reliable detection and diagnosis of dengue virus (DENV) is important for both patient care and epidemiological control. Starting with a llama immunized with a mixture of recombinant nonstructural protein 1 (NS1) antigen from the four DENV serotypes, a phage display immune library of single domain antibodies was constructed and binders selected which exhibited specificity and affinity for DENV NS1. Each of these single domain antibodies was evaluated for its binding affinity to NS1 from the four serotypes, and incorporated into a sandwich format for NS1 detection. An optimal pair was chosen that provided the best combination of sensitivity for all four DENV NS1 antigens spiked into 50% human serum while showing no cross reactivity to NS1 from Zika virus, yellow fever virus, tick-borne encephalitis virus, and minimal binding to NS1 from Japanese encephalitis virus and West Nile virus. These rugged and robust recombinant binding molecules offer attractive alternatives to conventional antibodies for implementation into immunoassays destined for resource limited locals.


Subject(s)
Antibodies, Viral/pharmacology , Dengue Virus/drug effects , Single-Domain Antibodies/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Dengue Virus/classification , Dengue Virus/immunology , Humans , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Spectrum Analysis , Surface Plasmon Resonance , Viral Nonstructural Proteins/immunology
8.
Sensors (Basel) ; 18(2)2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29364153

ABSTRACT

We describe the use of a paper-based probe impregnated with a vanadium-containing polyoxometalate anion, [PMo11VO40]5-, on screen-printed carbon electrodes for the electrochemical determination of chlorate. Cyclic voltammetry (CV) and chronocoulometry were used to characterize the ClO3- response in a pH = 2.5 solution of 100 mM sodium acetate. A linear CV current response was observed between 0.156 and 1.25 mg/mL with a detection limit of 0.083 mg/mL (S/N > 3). This performance was reproducible using [PMo11VO40]5--impregnated filter paper stored under ambient conditions for as long as 8 months prior to use. At high concentration of chlorate, an additional catalytic cathodic peak was seen in the reverse scan of the CVs, which was digitally simulated using a simple model. For chronocoulometry, the charge measured after 5 min gave a linear response from 0.625 to 2.5 mg/mL with a detection limit of 0.31 mg/mL (S/N > 3). In addition, the slope of charge vs. time also gave a linear response. In this case the linear range was from 0.312 to 2.5 mg/mL with a detection limit of 0.15 mg/mL (S/N > 3). Simple assays were conducted using three types of soil, and recovery measurements reported.

9.
Antibodies (Basel) ; 7(4)2018 Sep 29.
Article in English | MEDLINE | ID: mdl-31544886

ABSTRACT

The Bacillus collagen-like protein of anthracis (BclA), found in Bacillus anthracis spores, is an attractive target for immunoassays. Previously, using phage display we had selected llama-derived single-domain antibodies that bound to B. anthracis spore proteins including BclA. Single-domain antibodies (sdAbs), the recombinantly expressed heavy domains from the unique heavy-chain-only antibodies found in camelids, provide stable and well-expressed binding elements with excellent affinity. In addition, sdAbs offer the important advantage that they can be tailored for specific applications through protein engineering. A fusion of a BclA targeting sdAb with the enzyme Beta galactosidase (ß-gal) would enable highly sensitive immunoassays with no need for a secondary reagent. First, we evaluated five anti-BclA sdAbs, including four that had been previously identified but not characterized. Each was tested to determine its binding affinity, melting temperature, producibility, and ability to function as both capture and reporter in sandwich assays for BclA. The sdAb with the best combination of properties was constructed as a fusion with ß-gal and shown to enable sensitive detection. This fusion has the potential to be incorporated into highly sensitive assays for the detection of anthrax spores.

10.
Antibodies (Basel) ; 7(4)2018 Dec 15.
Article in English | MEDLINE | ID: mdl-31544894

ABSTRACT

In this work, we describe the selection and characterization of single-domain antibodies (sdAb) towards the E2/E3E2 envelope protein of the Western equine encephalitis virus (WEEV). Our purpose was to identify novel recognition elements which could be used for the detection, diagnosis, and perhaps treatment of western equine encephalitis (WEE). To achieve this goal, we prepared an immune phage display library derived from the peripheral blood lymphocytes of a llama that had been immunized with an equine vaccine that includes killed WEEV (West Nile Innovator + VEWT). This library was panned against recombinant envelope (E2/E3E2) protein from WEEV, and seven representative sdAb from the five identified sequence families were characterized. The specificity, affinity, and melting point of each sdAb was determined, and their ability to detect the recombinant protein in a MagPlex sandwich immunoassay was confirmed. Thus, these new binders represent novel recognition elements for the E2/E3E2 proteins of WEEV that are available to the research community for further investigation into their applicability for use in the diagnosis or treatment of WEE.

11.
Microb Cell Fact ; 16(1): 223, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29233140

ABSTRACT

BACKGROUND: A key advantage of recombinant antibody technology is the ability to optimize and tailor reagents. Single domain antibodies (sdAbs), the recombinantly produced variable domains derived from camelid and shark heavy chain antibodies, provide advantages of stability and solubility and can be further engineered to enhance their properties. In this study, we generated sdAbs specific for Ebola virus envelope glycoprotein (GP) and increased their stability to expand their utility for use in austere locals. Ebola virus is extremely virulent and causes fatal hemorrhagic fever in ~ 50 percent of the cases. The viral GP binds to host cell receptors to facilitate viral entry and thus plays a critical role in pathogenicity. RESULTS: An immune phage display library containing more than 107 unique clones was developed from a llama immunized with a combination of killed Ebola virus and recombinantly produced GP. We panned the library to obtain GP binding sdAbs and isolated sdAbs from 5 distinct sequence families. Three GP binders with dissociation constants ranging from ~ 2 to 20 nM, and melting temperatures from ~ 57 to 72 °C were selected for protein engineering in order to increase their stability through a combination of consensus sequence mutagenesis and the addition of a non-canonical disulfide bond. These changes served to increase the melting temperatures of the sdAbs by 15-17 °C. In addition, fusion of a short positively charged tail to the C-terminus which provided ideal sites for the chemical modification of these sdAbs resulted in improved limits of detection of GP and Ebola virus like particles while serving as tracer antibodies. CONCLUSIONS: SdAbs specific for Ebola GP were selected and their stability and functionality were improved utilizing protein engineering. Thermal stability of antibody reagents may be of particular importance when operating in austere locations that lack reliable refrigeration. Future efforts can evaluate the potential of these isolated sdAbs as candidates for diagnostic or therapeutic applications for Ebola.


Subject(s)
Ebolavirus/immunology , Protein Engineering/methods , Protein Stability , Single-Domain Antibodies/immunology , Single-Domain Antibodies/isolation & purification , Viral Envelope Proteins/immunology , Animals , Camelids, New World , Ebolavirus/chemistry , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/therapy , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/isolation & purification , Immunoglobulin Heavy Chains/metabolism , Peptide Library , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Refrigeration , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Temperature , Viral Envelope Proteins/chemistry
12.
Front Immunol ; 8: 865, 2017.
Article in English | MEDLINE | ID: mdl-28791022

ABSTRACT

Single domain antibodies (sdAbs) are gaining a reputation as superior recognition elements as they combine the advantages of the specificity and affinity found in conventional antibodies with high stability and solubility. Melting temperatures (Tms) of sdAbs cover a wide range from below 50 to over 80°C. Many sdAbs have been engineered to increase their Tm, making them stable until exposed to extreme temperatures. SdAbs derived from the variable heavy chains of camelid and shark heavy chain-only antibodies are termed VHH and VNAR, respectively, and generally exhibit some ability to refold and bind antigen after heat denaturation. This ability to refold varies from 0 to 100% and is a property dependent on both intrinsic factors of the sdAb and extrinsic conditions such as the sample buffer ionic strength, pH, and sdAb concentration. SdAbs have also been engineered to increase their solubility and refolding ability, which enable them to function even after exposure to temperatures that exceed their melting point. In addition, efforts to improve their stability at extreme pH and in the presence of chemical denaturants or proteases have been undertaken. Multiple routes have been employed to engineer sdAbs with these enhanced stabilities. The methods utilized to achieve these goals include grafting complementarity-determining regions onto stable frameworks, introduction of non-canonical disulfide bonds, random mutagenesis combined with stringent selection, point mutations such as inclusion of negative charges, and genetic fusions. Increases of up to 20°C have been realized, pushing the Tm of some sdAbs to over 90°C. Herein, we present an overview of the work done to stabilize sdAbs derived from camelids and sharks. Utilizing these various strategies sdAbs have been stabilized without significantly compromising their affinity, thereby providing superior reagents for detection, diagnostic, and therapeutic applications.

13.
Toxicon ; 135: 51-58, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28587791

ABSTRACT

Botulinum neurotoxin (BoNT) is a highly potent and lethal toxin, which even in minute quantities can lead to death. BoNT occurs in seven well described serotypes, A-G, and it is critical to not only detect the presence of BoNT, but also to determine the serotype to which a person has been exposed, as the degree of toxicity and persistence of symptoms varies greatly between the various types. Recently, Conway et al. 2010 developed single domain antibodies (sdAb), the recombinant variable domains of heavy-chain-only antibodies derived from camelids, for the detection of all seven serotypes of BoNT; identifying pairs of sdAb for each serotype they demonstrated the sensitive detection of each toxin. Using the sequence information provided in that work, fourteen of their sdAb were recreated with one goal being confirmation of their binding ability and specificity for the seven serotypes of BoNT. This was accomplished using a direct binding assay with the toxins immobilized on microtiter plates. In addition, the melting temperatures and production yields from E. coli shake flask fermentation were determined for each of the sdAb produced. In several instances, alternatives or variants of the previously described sdAb were prepared, either to improve the stability or production yields of the anti-BoNT sdAb. Insertion of four framework 1 point mutations (1E or D, 3Q, 5V, and 6E) gave repeated improvement in thermal stability by 5-9 °C, offering a method for increasing sdAb melting temperatures. This work provides for the independent verification of the ability of these sdAb to recognize all seven serotypes of BoNT, furnishing melting temperature, relative affinity, and production yield information that will allow for their future utilization with increased confidence.


Subject(s)
Antibody Specificity , Botulinum Toxins/immunology , Single-Domain Antibodies/immunology , Cross Reactions , Escherichia coli , Sequence Analysis, Protein , Serogroup , Single-Domain Antibodies/chemistry
14.
Toxicon ; 129: 68-73, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28209480

ABSTRACT

There is an unmet need for snake antivenoms that can be stored ready to use near the point of care. To address that need we have taken two anti-α-cobratoxin single domain antibodies and increased their thermal stability to improve their ambient temperature shelf-life. The anti-α-cobratoxin single domain antibodies C2 and C20 were first isolated, and demonstrated to be toxin neutralizing by Richard et al., 2013 (Richard, G., Meyers, A.J., McLean, M.D., Arbabi-Ghahroudi, M., MacKenzie, R., Hall, J.C., 2013. In vivo neutralization of alpha-cobratoxin with high-affinity llama single-domain antibodies (VHHs) and a VHH-Fc antibody. PLoS One 8, e69495). To thermal stabilize C2 and C20, we first made changes to their frame work 1 region that we had previously identified to be stabilizing, as well as reverted to the hallmark amino acids highly conserved in VHH domains; these changes improved their melting temperature (Tm) by 2 and 6 °C respectively. The further addition of a non-canonical disulfide bond raised the Tm an additional 13 and 9 °C respectively; giving final Tm values of 86 and 75 °C. Testing these mutants at 1 mg/mL at a range of elevated temperatures for an hour; we found that at 65 °C the wild type C2 and C20 had lost 35 and 95% of their binding activity respectively, while the mutants with the added disulfide bond retained nearly 100% of their initial binding activity. While significant work remains to formulate and field a shelf-stable antivenom, our results indicate such a product should be attainable in the near future.


Subject(s)
Antivenins/pharmacology , Cobra Neurotoxin Proteins/immunology , Single-Domain Antibodies/pharmacology , Amino Acid Sequence , Animals , Antivenins/chemistry , Circular Dichroism , Elapidae , Protein Stability , Single-Domain Antibodies/chemistry , Surface Plasmon Resonance , Temperature
15.
J Immunol Methods ; 442: 42-48, 2017 03.
Article in English | MEDLINE | ID: mdl-28109682

ABSTRACT

Immunoassay formats, in which antibodies provide sensitivity and specificity, are often utilized to provide rapid and simple diagnostic tests. Surface plasmon resonance is frequently used to evaluate the suitability of antibodies by determining binding kinetics to agents or surrogate antigens. We used SPR to evaluate a number of commercial monoclonal antibodies as well as single domain antibodies produced in-house. All the antibodies targeted the Ebola virus viral protein 40 (VP40). We determined the ability of each antibody to bind to immobilized VP40, and ensured they did not bind Ebola glycoprotein or the nucleoprotein. A subset of the monoclonal antibodies was immobilized to characterize antigen capture in solution. It can be advantageous to utilize antibodies that recognize distinct epitopes when choosing reagents for detection and diagnostic assays. We determined the uniqueness of the epitope recognized by the anti-VP40 antibodies using a checkerboard format that exploits the 6×6 array of interactions monitored by the Bio-Rad ProteOn XPR36 SPR instrument. The results demonstrate the utility of surface plasmon resonance to characterize monoclonal and recombinant antibodies. Additionally, the analysis presented here enabled the identification of pairs of anti-VP40 antibodies which could potentially be utilized in sandwich type immunoassays for the detection of Ebola virus.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, Viral/immunology , Ebolavirus/immunology , Epitope Mapping/methods , Epitopes , Immunoassay/methods , Single-Domain Antibodies/immunology , Surface Plasmon Resonance , Viral Matrix Proteins/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibody Affinity , Antibody Specificity , Antigens, Viral/metabolism , Binding Sites, Antibody , Ebolavirus/metabolism , Kinetics , Protein Binding , Protein Denaturation , Protein Stability , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Temperature , Viral Matrix Proteins/metabolism
16.
Antibodies (Basel) ; 6(1)2017 Feb 02.
Article in English | MEDLINE | ID: mdl-31548519

ABSTRACT

Previously, our group isolated and evaluated anti-ricin single domain antibodies (sdAbs) derived from llamas, engineered them to further increase their thermal stability, and utilized them for the development of sensitive immunoassays. In work focused on the development of therapeutics, Vance et al. 2013 described anti-ricin sdAbs derived from alpacas. Herein, we evaluated the utility of selected alpaca-derived anti-ricin sdAbs for detection applications, and engineered an alpaca-derived sdAb to increase its melting temperature, providing a highly thermal stable reagent for use in ricin detection. Four of the alpaca-derived anti-ricin A-chain sdAbs were produced and characterized. All four bound to epitopes that overlapped with our previously described llama sdAbs. One alpaca sdAb, F6, was found to possess both a high melting temperature (73 °C) and to work optimally with a thermally stable llama anti-ricin sdAb in sandwich assays for ricin detection. We employed a combination of consensus sequence mutagenesis and the addition of a non-canonical disulfide bond to further enhance the thermal stability of F6 to 85 °C. It is advantageous to have a choice of recognition reagents when developing assays. This work resulted in defining an additional pair of highly thermal stable sdAbs for the sensitive detection of ricin.

17.
Mol Immunol ; 78: 146-154, 2016 10.
Article in English | MEDLINE | ID: mdl-27639717

ABSTRACT

CD20 is a membrane protein with four integral membrane regions and a large extracellular loop between residues 142 and 187, which serves as a target binding region for rituximab (RTX) and most other anti-CD20 monoclonal antibodies. It is highly expressed in B-lymphoma cells and B lymphocytes and often serves as a target for immunotherapy. In this study, we developed single domain antibodies (sdAbs) for the sensitive detection of CD20. To achieve this, an immune sdAb library was prepared from llamas immunized with a fusion between the large loop from CD20 and Hoc, a highly antigenic protein from the T4 bacteriophage, (CD20-Hoc). By subtracting binders to recombinant Hoc during the biopanning, potential anti-CD20 sdAbs were selected, sequenced, and characterized for their binding affinity to CD20-Hoc fusion versus Hoc. Twenty five clones grouped into three different families based on CDR3 sequence were identified as potential CD20 binders. The binding kinetics of representative sdAbs from each class and RTX were evaluated by surface plasmon resonance (SPR). Most of the sdAbs that were evaluated show binding affinities to CD20-Hoc in the nM range, and class A sdAbs, exhibited ≥40-fold increase in affinity for CD20-Hoc versus Hoc. When the binding of the sdAbs to CD20 on SU-DHL-4 cells was evaluated by flow cytometry, only class A sdAbs displayed strong binding to CD20 and recognized DHL cells in a concentration dependent manner.


Subject(s)
Antigens, CD20/immunology , Single-Domain Antibodies/immunology , Animals , Antibody Affinity , Camelids, New World , Flow Cytometry , Humans , Peptide Library , Surface Plasmon Resonance
18.
PLoS One ; 11(8): e0160534, 2016.
Article in English | MEDLINE | ID: mdl-27494523

ABSTRACT

Single-domain antibodies derived from the unique New Antigen Receptor found in sharks have numerous potential applications, ranging from diagnostic reagents to therapeutics. Shark-derived single-domain antibodies possess the same characteristic ability to refold after heat denaturation found in single-domain antibodies derived from camelid heavy-chain-only antibodies. Recently, two shark derived single-domain antibodies specific for the nucleoprotein of Ebola virus were described. Our evaluation confirmed their high affinity for the nucleoprotein, but found their melting temperatures to be low relative to most single-domain antibodies. Our first approach towards improving their stability was grafting antigen-binding regions (complementarity determining regions) of one of these single-domain antibodies onto a high melting temperature shark single-domain antibody. This resulted in two variants: one that displayed excellent affinity with a low melting temperature, while the other had poor affinity but a higher melting temperature. These new proteins, however, differed in only 3 amino acids within the complementarity determining region 2 sequence. In shark single-domain antibodies, the complementarity determining region 2 is often referred to as hypervariable region 2, as this segment of the antibody domain is truncated compared to the sequence in camelid single-domain antibodies and conventional heavy chain variable domains. To elucidate which of the three amino acids or combinations thereof were responsible for the affinity and stability we made the 6 double and single point mutants that covered the intermediates between these two clones. We found a single amino acid change that achieved a 10°C higher melting temperature while maintaining sub nM affinity. This research gives insights into the impact of the shark sdAb hypervariable 2 region on both stability and affinity.


Subject(s)
Ebolavirus/immunology , Nucleoproteins/immunology , Sharks/immunology , Single-Domain Antibodies/chemistry , Viral Proteins/immunology , Animals , Complementarity Determining Regions , Fish Proteins/chemistry , Fish Proteins/immunology , Point Mutation , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Surface Plasmon Resonance
19.
PLoS One ; 11(2): e0149393, 2016.
Article in English | MEDLINE | ID: mdl-26895405

ABSTRACT

Next-Generation Sequencing and bioinformatics are powerful tools for analyzing the large number of DNA sequences present in an immune library. In this work, we constructed a cDNA library of single domain antibodies from a llama immunized with staphylococcal enterotoxin B. The resulting library was sequenced, resulting in approximately 8.5 million sequences with 5.4 million representing intact, useful sequences. The sequenced library was interrogated using sequences of known SEB-binding single domain antibodies from the library obtained through phage display panning methods in a previous study. New antibodies were identified, produced, and characterized, and were shown to have affinities and melting temperatures comparable to those obtained by traditional panning methods. This demonstrates the utility of using NGS as a complementary tool to phage-displayed biopanning as a means for rapidly obtaining additional antibodies from an immune library. It also shows that phage display, using a library of high diversity, is able to select high quality antibodies even when they are low in frequency.


Subject(s)
Cell Surface Display Techniques , High-Throughput Nucleotide Sequencing , Single-Domain Antibodies/genetics , Amino Acid Sequence , Antibody Affinity , Cloning, Molecular , Gene Dosage , Gene Expression , Gene Library , Humans , Molecular Sequence Data , Peptide Library , Phylogeny , Protein Binding , Protein Stability , Sequence Alignment , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism
20.
Biotechnol Rep (Amst) ; 10: 56-65, 2016 Jun.
Article in English | MEDLINE | ID: mdl-28352525

ABSTRACT

Straightforward and effective methods are required for the bioconjugation of proteins to surfaces and particles. Previously we demonstrated that the fusion of a single domain antibody with the biotin binding molecule rhizavidin provided a facile method to coat biotin-modified surfaces with a highly active and oriented antibody. Here, we constructed similar single domain antibody-rhizavidin fusions as well as unfused rhizavidin with a His-tag. The unfused rhizavidin produced efficiently and its utility for assay development was demonstrated in surface plasmon resonance experiments. The single domain antibody-rhizavidin fusions were utilized to coat quantum dots that had been prepared with surface biotins. Preparation of antibody coated quantum dots by this means was found to be both easy and effective. The prepared single domain antibody-quantum dot reagent was characterized by surface plasmon resonance and applied to toxin detection in a fluoroimmunoassay sensing format.

SELECTION OF CITATIONS
SEARCH DETAIL
...