Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Mol Biol ; 435(24): 168338, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37923120

ABSTRACT

To facilitate the eukaryotic repriming pathway of DNA damage tolerance, PrimPol synthesises de novo oligonucleotide primers downstream of polymerase-stalling obstacles. These primers enable replicative polymerases to resume synthesis and ensure the timely completion of DNA replication. Initiating synthesis de novo requires the coordination of single-stranded DNA, initiating nucleotides, and metal ions within PrimPol's active site to catalyze the formation of the first phosphodiester bond. Here we examine the interactions between human PrimPol's catalytic domain, nucleotides, and DNA template during each of the various catalytic steps to determine the 'choreography' of primer synthesis, where substrates bind in an ordered manner. Our findings show that the ability of PrimPol to conduct de novo primer synthesis is underpinned by a network of stabilising interactions between the enzyme, template, and nucleotides, as we previously observed for related primase CRISPR-Associated Prim-Pol (CAPP). Together, these findings establish a detailed model for the initiation of DNA synthesis by human PrimPol, which appears highly conserved.


Subject(s)
Catalytic Domain , DNA Replication , DNA-Directed DNA Polymerase , Humans , DNA Primase/metabolism , DNA, Single-Stranded/genetics , DNA-Directed DNA Polymerase/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Nucleotides
2.
Curr Opin Struct Biol ; 82: 102652, 2023 10.
Article in English | MEDLINE | ID: mdl-37459807

ABSTRACT

Members of the primase-polymerase (Prim-Pol) superfamily are found in all domains of life and play diverse roles in genome stability, including primer synthesis during DNA replication, lesion repair and damage tolerance. This review focuses primarily on Prim-Pol members capable of de novo primer synthesis that have experimentally derived structural models available. We discuss the mechanism of DNA primer synthesis initiation by Prim-Pol catalytic domains, based on recent structural and functional studies. We also describe a general model for primer initiation that also includes the ancillary domains/subunits, which stimulate the initiation of primer synthesis.


Subject(s)
DNA Primase , DNA Replication , DNA Primase/chemistry , Catalytic Domain
3.
Nucleic Acids Res ; 51(14): 7125-7142, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37279911

ABSTRACT

The discovery of reverse transcriptases (RTs) challenged the central dogma by establishing that genetic information can also flow from RNA to DNA. Although they act as DNA polymerases, RTs are distantly related to replicases that also possess de novo primase activity. Here we identify that CRISPR associated RTs (CARTs) directly prime DNA synthesis on both RNA and DNA. We demonstrate that RT-dependent priming is utilized by some CRISPR-Cas complexes to synthesise new spacers and integrate these into CRISPR arrays. Expanding our analyses, we show that primer synthesis activity is conserved in representatives of other major RT classes, including group II intron RT, telomerase and retroviruses. Together, these findings establish a conserved innate ability of RTs to catalyse de novo DNA primer synthesis, independently of accessory domains or alternative priming mechanisms, which likely plays important roles in a wide variety of biological pathways.


Reverse transcriptases (RTs) are replicative enzymes that copy RNA into DNA and undertake roles, including viral replication, retrotransposition and telomere maintenance. The initiation of RT synthesis activities is usually dependent on the presence of a primer. The current dogma proposes that a variety of indirect, RT-independent, priming mechanisms instigate synthesis. However, this study establishes that CRISPR-associated RTs (CARTs) are capable of priming DNA synthesis from scratch, which enables the capture of foreign genetic material for storage in CRISPR arrays. The authors also report that other notable RT family members, including retrotransposon RTs, telomerase and retroviral RT are, surprisingly, able to directly catalyze primer synthesis. These findings significantly alter our understanding of priming mechanisms utilised by RTs in various biological pathways.


Subject(s)
RNA-Directed DNA Polymerase , DNA-Directed DNA Polymerase/genetics , HIV Reverse Transcriptase/genetics , Introns/genetics , Retroviridae/genetics , RNA/genetics , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , DNA Replication
4.
Biosci Rep ; 43(7)2023 07 26.
Article in English | MEDLINE | ID: mdl-37358261

ABSTRACT

To pass on genetic information to the next generation, cells must faithfully replicate their genomes to provide copies for each daughter cell. To synthesise these duplicates, cells employ specialised enzymes called DNA polymerases, which rapidly and accurately replicate nucleic acid polymers. However, most polymerases lack the ability to directly initiate DNA synthesis and required specialised replicases called primases to make short polynucleotide primers, from which they then extend. Replicative primases (eukaryotes and archaea) belong to a functionally diverse enzyme superfamily known as Primase-Polymerases (Prim-Pols), with orthologues present throughout all domains of life. Characterised by a conserved catalytic Prim-Pol domain, these enzymes have evolved various roles in DNA metabolism, including DNA replication, repair, and damage tolerance. Many of these biological roles are fundamentally underpinned by the ability of Prim-Pols to generate primers de novo. This review examines our current understanding of the catalytic mechanisms utilised by Prim-Pols to initiate primer synthesis.


Subject(s)
DNA Primase , DNA-Directed DNA Polymerase , DNA Primase/genetics , DNA Primase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA Replication , Catalytic Domain , DNA
5.
Nature ; 605(7911): 767-773, 2022 05.
Article in English | MEDLINE | ID: mdl-35508653

ABSTRACT

During the initiation of DNA replication, oligonucleotide primers are synthesized de novo by primases and are subsequently extended by replicative polymerases to complete genome duplication. The primase-polymerase (Prim-Pol) superfamily is a diverse grouping of primases, which includes replicative primases and CRISPR-associated primase-polymerases (CAPPs) involved in adaptive immunity1-3. Although much is known about the activities of these enzymes, the precise mechanism used by primases to initiate primer synthesis has not been elucidated. Here we identify the molecular bases for the initiation of primer synthesis by CAPP and show that this mechanism is also conserved in replicative primases. The crystal structure of a primer initiation complex reveals how the incoming nucleotides are positioned within the active site, adjacent to metal cofactors and paired to the templating single-stranded DNA strand, before synthesis of the first phosphodiester bond. Furthermore, the structure of a Prim-Pol complex with double-stranded DNA shows how the enzyme subsequently extends primers in a processive polymerase mode. The structural and mechanistic studies presented here establish how Prim-Pol proteins instigate primer synthesis, revealing the requisite molecular determinants for primer synthesis within the catalytic domain. This work also establishes that the catalytic domain of Prim-Pol enzymes, including replicative primases, is sufficient to catalyse primer formation.


Subject(s)
DNA Primase , DNA Replication , Catalytic Domain , DNA/genetics , DNA Primase/metabolism , DNA Primers/metabolism
6.
Nat Commun ; 12(1): 3690, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140468

ABSTRACT

CRISPR-Cas pathways provide prokaryotes with acquired "immunity" against foreign genetic elements, including phages and plasmids. Although many of the proteins associated with CRISPR-Cas mechanisms are characterized, some requisite enzymes remain elusive. Genetic studies have implicated host DNA polymerases in some CRISPR-Cas systems but CRISPR-specific replicases have not yet been discovered. We have identified and characterised a family of CRISPR-Associated Primase-Polymerases (CAPPs) in a range of prokaryotes that are operonically associated with Cas1 and Cas2. CAPPs belong to the Primase-Polymerase (Prim-Pol) superfamily of replicases that operate in various DNA repair and replication pathways that maintain genome stability. Here, we characterise the DNA synthesis activities of bacterial CAPP homologues from Type IIIA and IIIB CRISPR-Cas systems and establish that they possess a range of replicase activities including DNA priming, polymerisation and strand-displacement. We demonstrate that CAPPs operonically-associated partners, Cas1 and Cas2, form a complex that possesses spacer integration activity. We show that CAPPs physically associate with the Cas proteins to form bespoke CRISPR-Cas complexes. Finally, we propose how CAPPs activities, in conjunction with their partners, may function to undertake key roles in CRISPR-Cas adaptation.


Subject(s)
Bacteria/genetics , Bacterial Proteins/metabolism , Bacteroidetes/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , DNA Primase/metabolism , DNA-Directed DNA Polymerase/metabolism , Bacteria/enzymology , Bacterial Proteins/genetics , Bacteroidetes/enzymology , Computational Biology , DNA Primase/genetics , DNA Primers/biosynthesis , DNA-Directed DNA Polymerase/genetics , Dimerization , Escherichia coli/metabolism , Gene Expression , Mutation , Phylogeny , Prokaryotic Cells/metabolism , Recombinant Proteins , Ribonucleotides/metabolism
7.
Nat Commun ; 11(1): 4196, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32826907

ABSTRACT

Cells utilise specialized polymerases from the Primase-Polymerase (Prim-Pol) superfamily to maintain genome stability. Prim-Pol's function in genome maintenance pathways including replication, repair and damage tolerance. Mycobacteria contain multiple Prim-Pols required for lesion repair, including Prim-PolC that performs short gap repair synthesis during excision repair. To understand the molecular basis of Prim-PolC's gap recognition and synthesis activities, we elucidated crystal structures of pre- and post-catalytic complexes bound to gapped DNA substrates. These intermediates explain its binding preference for short gaps and reveal a distinctive modus operandi called Synthesis-dependent Template Displacement (STD). This mechanism enables Prim-PolC to couple primer extension with template base dislocation, ensuring that the unpaired templating bases in the gap are ushered into the active site in an ordered manner. Insights provided by these structures establishes the molecular basis of Prim-PolC's gap recognition and extension activities, while also illuminating the mechanisms of primer extension utilised by closely related Prim-Pols.


Subject(s)
Bacterial Proteins/chemistry , DNA Primase/chemistry , DNA Repair , DNA Replication , DNA-Directed DNA Polymerase/chemistry , DNA/chemistry , Mycobacterium/genetics , Mycobacterium/metabolism , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , DNA/metabolism , DNA Primase/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Models, Molecular , Protein Conformation , Protein Interaction Domains and Motifs
8.
Methods Mol Biol ; 2004: 79-90, 2019.
Article in English | MEDLINE | ID: mdl-31147911

ABSTRACT

Analysis of protein-protein interactions (PPI) is key for the understanding of most protein assemblies including structural maintenance of chromosomes (SMC) complexes. SMC complexes are composed of SMC proteins, kleisin, and kleisin-interacting subunits. These subunits interact in specific ways to constitute and regulate the closed structure of the complexes. Specifically, kleisin molecules bridge the SMC dimers and the kleisin-interacting subunits modulate stability of the bridge. Here we describe a multicomponent version of a yeast two-hybrid (Y2H) method and its application for analysis of the bridging role of the Nse4 kleisin in the SMC5/6 complex. Using this technique, we also show a stabilizing effect of KITE (kleisin-interacting tandem winged-helix element) proteins on SMC5/6.


Subject(s)
Multiprotein Complexes/metabolism , Protein Interaction Maps/physiology , Cell Cycle Proteins/metabolism , Chromosomes, Fungal/physiology , Protein Subunits/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Two-Hybrid System Techniques
9.
Nucleic Acids Res ; 47(12): 6172-6183, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31106359

ABSTRACT

Topoisomerase II (Top2) is an essential enzyme that decatenates DNA via a transient Top2-DNA covalent intermediate. This intermediate can be stabilized by a class of drugs termed Top2 poisons, resulting in massive DNA damage. Thus, Top2 activity is a double-edged sword that needs to be carefully controlled to maintain genome stability. We show that Uls1, an adenosine triphosphate (ATP)-dependent chromatin remodelling (Snf2) enzyme, can alter Top2 chromatin binding and prevent Top2 poisoning in yeast. Deletion mutants of ULS1 are hypersensitive to the Top2 poison acriflavine (ACF), activating the DNA damage checkpoint. We map Uls1's Top2 interaction domain and show that this, together with its ATPase activity, is essential for Uls1 function. By performing ChIP-seq, we show that ACF leads to a general increase in Top2 binding across the genome. We map Uls1 binding sites and identify tRNA genes as key regions where Uls1 associates after ACF treatment. Importantly, the presence of Uls1 at these sites prevents ACF-dependent Top2 accumulation. Our data reveal the effect of Top2 poisons on the global Top2 binding landscape and highlights the role of Uls1 in antagonizing Top2 function. Remodelling Top2 binding is thus an important new means by which Snf2 enzymes promote genome stability.


Subject(s)
DNA Helicases/metabolism , DNA Topoisomerases, Type II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Acriflavine/toxicity , DNA Helicases/chemistry , DNA Helicases/genetics , DNA Topoisomerases, Type II/drug effects , DNA, Fungal/metabolism , Gene Deletion , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
10.
Nucleic Acids Res ; 44(3): 1064-79, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26446992

ABSTRACT

SMC5/6 is a highly conserved protein complex related to cohesin and condensin, which are the key components of higher-order chromatin structures. The SMC5/6 complex is essential for proliferation in yeast and is involved in replication fork stability and processing. However, the precise mechanism of action of SMC5/6 is not known. Here we present evidence that the NSE1/NSE3/NSE4 sub-complex of SMC5/6 binds to double-stranded DNA without any preference for DNA-replication/recombination intermediates. Mutations of key basic residues within the NSE1/NSE3/NSE4 DNA-binding surface reduce binding to DNA in vitro. Their introduction into the Schizosaccharomyces pombe genome results in cell death or hypersensitivity to DNA damaging agents. Chromatin immunoprecipitation analysis of the hypomorphic nse3 DNA-binding mutant shows a reduced association of fission yeast SMC5/6 with chromatin. Based on our results, we propose a model for loading of the SMC5/6 complex onto the chromatin.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin/metabolism , DNA/metabolism , Nuclear Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Amino Acid Sequence , Cell Cycle Proteins/chemistry , DNA Replication , Humans , Molecular Sequence Data , Protein Binding , Recombination, Genetic , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...