Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Molecules ; 28(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37241925

ABSTRACT

Coriander is a widely used plant for its medicinal and biological properties. Both coriander essential oil and extracts are interesting sources of bioactive compounds and are widely used as spices in culinary practice due to their exclusive aroma and flavour. We focus our attention on coriander extracts that are rich in polyphenols. It is well known that plant polyphenols possess different biological activities and several functional foods contain this class of compounds. The polyphenol profile in an extract can be influenced by the plant part studied, the method of extraction and other parameters. This study performs a literature review using the words "coriander", "polyphenols" and "extraction" or "biological activity" in different databases such as PubMed, Google Scholar and Scopus. After that, we focus on the evidence of coriander polyphenols as protective agents against some inflammation-related diseases. Due to the bioactivities of coriander extract, this herb can be considered a valuable functional food against obesity, metabolic syndrome and diabetes.


Subject(s)
Coriandrum , Metabolic Syndrome , Humans , Coriandrum/metabolism , Metabolic Syndrome/drug therapy , Dietary Supplements , Plant Extracts/pharmacology , Plant Extracts/metabolism , Obesity/drug therapy
2.
Heliyon ; 8(5): e09531, 2022 May.
Article in English | MEDLINE | ID: mdl-35663759

ABSTRACT

Natural deep eutectic solvents (NADES) have emerged as green extracting solvents in recent years. In this study, a variety of choline chloride (ChCl)-based natural deep eutectic solvents (NADES) were used as co-solvents for the hydrodistillation of nutmeg with the aim to obtain M. fragrans essential oil (EO) in higher yield and with a lower content of toxic phenylpropenoids (e.g. myristicin and safrole). The influence of ChCl-based NADES as additives in the hydrodistillation process was studied. The results showed that NADES additives improved the yield of the extracted essential oil and influenced its composition leading to a decrease in toxic phenylpropenoids. Best results were achieved by using ChCl-CA NADES ultrasound-assisted pretreatment coupled with traditional 2 â€‹h Clevenger hydrodistillation that increased the yield of the EO from 0.98% (traditional) to 1.41% and a decrease of the phenylpropenoids amount in the essential oil.

3.
Tree Physiol ; 42(5): 939-957, 2022 05 09.
Article in English | MEDLINE | ID: mdl-34875099

ABSTRACT

In this study, grafted and own-rooted young hazelnut plants of three high-quality cultivars were cultivated in Central Italy to investigate possible differences in growth, fruit and flower production, and physiological processes encompassing water uptake, photosynthetic variables and non-structural carbohydrate allocation. Stable isotopes and photosynthetic measurements were used to study carbon and water fluxes in plants. For the first time, an ecophysiological study was carried out to understand the seasonal growth dynamics of grafted plants in comparison with own-rooted plants. The own-rooted hazelnuts showed rapid above-ground development with large canopy volume, high amount of sprouts and earlier yield. The grafted plants showed greater below-ground development with lower canopy volumes and lower yield. However, later, the higher growth rates of the canopy led these plants to achieve the same size as that of the own-rooted hazelnuts and to enter the fruit production phase. Different seasonal behaviour in root water uptake and leaf photosynthesis-related variables was detected between the two types of plants. The grafted plants showed root development that allowed deeper water uptake than that of the own-rooted hazelnuts. Moreover, the grafted plants were characterized by a higher accumulation of carbohydrate reserves in their root tissues and by higher stomatal reactivity, determining significant plasticity in response to seasonal thermal variations.


Subject(s)
Corylus , Carbohydrates , Carbon , Corylus/chemistry , Photosynthesis/physiology , Plants , Water
4.
Int J Mol Sci ; 22(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477914

ABSTRACT

Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine (Vitis vinifera L.). Genetic resistance is an effective and sustainable control strategy, but major resistance genes (encoding receptors for specific pathogen effectors) introgressed from wild Vitis species, although effective, may be non-durable because the pathogen can evolve to avoid specific recognition. Previous transcriptomic studies in the resistant species Vitis riparia highlighted the activation of signal transduction components during infection. The transfer of such components to V. vinifera might confer less specific and therefore more durable resistance. Here, we describe the generation of transgenic V. vinifera lines constitutively expressing the V. riparia E3 ubiquitin ligase gene VriATL156. Phenotypic and molecular analysis revealed that the transgenic plants were less susceptible to P. viticola than vector-only controls, confirming the role of this E3 ubiquitin ligase in the innate immune response. Two independent transgenic lines were selected for detailed analysis of the resistance phenotype by RNA-Seq and microscopy, revealing the profound reprogramming of transcription to achieve resistance that operates from the earliest stages of pathogen infection. The introduction of VriATL156 into elite grapevine cultivars could therefore provide an effective and sustainable control measure against downy mildew.


Subject(s)
Disease Resistance/genetics , Plant Diseases/genetics , Ubiquitin-Protein Ligases/genetics , Vitis/genetics , Gene Expression Regulation, Plant/genetics , Host-Pathogen Interactions/genetics , Oomycetes/pathogenicity , Plant Diseases/microbiology , Plant Proteins/genetics , Transcriptome/genetics
5.
Environ Sci Pollut Res Int ; 28(8): 9267-9275, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33140299

ABSTRACT

Global environmental performances of anaerobic co-digestion and co-composting of aflatoxin B1 (AFB1) contaminated corn were investigated by a life cycle assessment approach. Anaerobic co-digestion of pig slurry and corn with 25 µgkg-1 ww AFB1 concentration resulted able to generate 627 NLkgVS-1 of biogas with a reduction of the AFB1 concentration in the digestate of 44%. At AFB1 concentration of 100 µg kg-1 ww, the process resulted strongly inhibited with a biogas generation of 122 NLkgVS-1 and AFB1 concentration reduction in the digestate of 25%. Co-composting of 100 µg kg-1 dw AFB1 contaminated corn with other substrates as organic fraction of municipal waste, pig slurry, and other lignin-cellulosic residues showed a removal efficiency of AFB1 ranging from about 80 up to 95% depending on the different mixtures adopted. Environmental consequences associated to the removal of 1 mg of AFB1 in different scenarios investigated, including also the use on land of the digestate and of the compost, indicated that global warming was affected equally by co-digestion and co-composting, about 95 kgCO2eq. Co-digestion showed also the possibility of achieving avoided emissions of about - 0.007 kgNMVOCeq, - 2.5E-3 kgPeq, and - 30CTUe. Benefits concerning resource depletion resulted higher for co-composting due to the high amount of mineral fertilizer replaced. Contribution of AFB1 in the determination of human health (DALY) resulted lower than about 4% for co-digestion and practically negligible for co-composting.


Subject(s)
Composting , Aflatoxin B1 , Animals , Digestion , Life Cycle Stages , Swine , Zea mays
6.
Sci Total Environ ; 695: 133762, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31419681

ABSTRACT

European policy is direct towards increasing the agricultural reuse of sludge on soil for improving the fertility; however, the effects of long-term pharmaceutical sewage sludge (PSS) application on soil properties are still unknown. Thus, the aim of this work was to evaluate the agronomic and environmental effects on soil after 17 years of organic amendment with PSS derived from daptomycin production. Five different doses of PSS were spread on lands located in Anagni, Central Italy. Physico-chemical soil properties were investigated, as well as total and bioavailable heavy metals, changes in the soil organic matter quality and biochemical functioning. PSS application showed a positive agronomic potential, improving SOM quality, increasing soil humified organic matter and raising plant nutrients. SOM dynamic was different at low and high PSS supplies, as confirmed by the chemical and biochemical analysis (e.g. C biomass, FDA hydrolysis activity, basal respiration, dehydrogenase, urease and phosphatase activities). However, in a long-term agricultural reuse, environmental risks of PSS recycling were related to the increase of some heavy metals (Hg, Zn and Cu) and exchangeable Na.


Subject(s)
Agriculture/methods , Environmental Monitoring , Soil Pollutants/metabolism , Waste Management/methods , Italy , Pharmaceutical Preparations , Recycling , Risk Assessment , Soil/chemistry
7.
Front Plant Sci ; 10: 1599, 2019.
Article in English | MEDLINE | ID: mdl-31921248

ABSTRACT

Cocoa (Theobroma cacao L.), an economically important tropical-fruit crop as source of chocolate, has recently gained a considerable attention; its seeds contain a large amount of different bioactive compounds that have attracted interest because may be beneficial to humans by improving cardiovascular health, by cancer chemo-preventive effects and also through neuroprotective activities. The morphological and anatomical characteristics of cocoa seeds are closely related to the aroma and to the nutritional properties. This study aimed to provide more information about the storage of some metabolites in the various components of cocoa seed by microscopical and phytochemical analyses. Polyphenols, sterols, tocopherols and fatty acids were detected in different portions of the seeds (teguments, cotyledons, embryo axis and pulp). Quali and quantitative differences were observed and a characteristic polyphenol pattern was detected in the different portions of the seed; cytological analysis demonstrated the presence of these compounds in big vacuolated polyphenolic cells. Among the analyzed fatty acids, the stearic and oleic acids were the most abundant in all the seed components (teguments, cotyledons and embryo axis). Fatty acids, usually found in the form of esters, thioesters and amides, represent one of the storage substances of cocoa seed probably localized in lipid globules, which in our observations occupied almost the entire volume of small isodiametric cells of cotyledon mesophyll. In the cocoa seeds we observed also a different distribution of sterols: ß-sitosterol and Δ5-avenasterol were the most abundant, above all in the embryo axis; stigmasterol and campesterol were less present in embryo axis and more abundant in teguments; campestanol level was again higher in teguments but lower in cotyledons. The specific localization of different kind of sterols was probably related to a peculiar function. Our experiments demonstrated that all seed components contribute to the metabolites storage, but with interesting differences in the localization and amount of each metabolite.

8.
BMC Plant Biol ; 18(1): 39, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29466943

ABSTRACT

CORRECTION: Following publication of the original article [1], it came to the attention of the authors that they had omitted to acknowledge the University of Parma. The Acknowledgement section should read as follows: "The authors kindly acknowledge the University of Parma (Department of Chemistry, Life Sciences and Environmental Sustainability; formerly Department of Life Sciences/Evolutionary and Functional Biology) for the transfer of funds obtained from the Ager project: GIALLUMI DELLA VITE: TECNOLOGIE INNOVATIVE PER LA DIAGNOSI E LO STUDIO DELLE INTERAZIONI PIANTA/PATOGENO, BANDO AGER VITICOLTURA DA VINO".

9.
Nat Prod Res ; 32(22): 2646-2651, 2018 Nov.
Article in English | MEDLINE | ID: mdl-28920481

ABSTRACT

Two new lignans, namely 7-O-podophyllotoxinyl butyrate (1) and dihydroclusin 9-acetate (2), were isolated from the dichloromethane fraction of a methanol extract of Bursera microphylla (Burseraceae), along with eight known lignans (3-10). Their structures were determined by means of comprehensive spectroscopic analysis. Lignans 2-6 were tested for their anti-proliferative activity on the cancer cell lines LS180, A549 and HeLa, and on a non-cancer cell line, ARPE-19. Only compounds 4 and 5 showed an interesting activity on HeLa cells.


Subject(s)
Acetates/pharmacology , Bursera/chemistry , Butyrates/pharmacology , Lignans/pharmacology , Resins, Plant/chemistry , Acetates/isolation & purification , Butyrates/isolation & purification , Cell Line, Tumor , HeLa Cells , Humans , Lignans/isolation & purification , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistry
10.
Waste Manag ; 78: 467-473, 2018 Aug.
Article in English | MEDLINE | ID: mdl-32559934

ABSTRACT

Cereals are primary crops and are the most important raw material for feed and food production. Increasing aflatoxin B1 (AFB1) contamination of corn is an emerging issue, and disposal procedures for AFB1-contaminated corn are not currently defined. Recovery of contaminated corn through anaerobic digestion may represent a suitable strategy for its valorisation; however, only a few studies concerning the effect of AFB1 on anaerobic processes can be found. Thus, the purpose of the present work was to evaluate the effect of the mycotoxin AFB1 on a semi-continuous anaerobic digestion (AD) process. Semi-continuous trials were carried out, and the biomethane production from ABF1-contaminated feedstocks (25, 50, and 100 µg kg-1 AFB1 wet weight) was compared to that from non-contaminated feedstock. Moreover, the feasibility of the agronomic re-use of the digestate, and the fate of AFB1 during AD was assessed. No adverse effect of 25 µg kg-1 AFB1 contamination of feedstock on biomethane yield was observed. In contrast, 100 µg kg-1 AFB1 in the feedstock resulted in inhibition of the process due to the accumulation of organic acids, and to the decrease of the pH in the digestate (from 8.1 to 5.4). The continuous addition of AFB1-contaminated feedstock led to accumulation of the mycotoxin in the digestates. Consequently, a composting process should always precede the agricultural re-use of digestates in order to remove AFB1 and the residual phytotoxicity.

11.
Waste Manag ; 74: 203-212, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29273542

ABSTRACT

Nowadays, the agricultural reuse of pharmaceutical sludge is still limited due to environmental and agronomic issues (e.g. low stabilization of the organic matter, phytotoxicity). The aim of the present study was to evaluate the characteristics of a pharmaceutical sludge derived from the daptomycin production and to study the possibility of improving its quality through composting. The pharmaceutical sludge showed high content of macronutrients (e.g. total Kjeldahl N content was 38 g kg-1), but it was also characterized by high salinity (7.9 dS m-1), phytotoxicity (germination index was 36.7%) and a low organic matter stabilization. Two different mixtures were prepared (mixture A: 70% sludge + 30% wood chips w/w, mixture B: 45% sludge + 45% wood chips + 10% cereal straw w/w) and treated through static composting using two different aeration systems: active and passive aeration. The mixtures resulted in the production of two different compost, and the evolution of process management parameters was different. The low total solids and organic matter content of mixture A led to the failure of the process. The addition of cereal straw in mixture B resulted in increased porosity and C/N ratio and, consequently, in an optimal development of the composting process (e.g. the final organic matter loss was 54.1% and 63.1% for the passively and actively aerated treatment, respectively). Both passively and actively aerated composting of mixture B improved the quality of the pharmaceutical sludge, by increasing its organic matter stabilization and removing phytotoxicity.


Subject(s)
Composting , Pharmaceutical Preparations , Sewage/chemistry , Agriculture , Soil , Wood
12.
Food Chem Toxicol ; 111: 616-622, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29233689

ABSTRACT

Estragole, a common component of herbs and spices, is a wellknown genotoxic hepatocarcinogen in rodents, whereas its potential toxic effect in humans is still debated. In the European contest, one of the major sources of human exposure to this phytochemical is Foeniculum vulgare Mill. (fennel). Therefore, the aim of this study was to evaluate the in vitro toxicity of estragole in the context of two complex phytochemical mixtures derived from fennel: fennel seed powder (FSPw) and fennel seed essential oil (FSEO). The estragole-containing preparations were analysed for their ability to cause cytotoxicity, genotoxicity, apoptosis and cell cycle perturbation in the human hepatoma (HepG2) cell line. None of the tested concentrations of FSPw induced DNA damage, nor apoptosis or cell cycle perturbation. Although FSEO did not induce any genetic damage as well, it exerted marked dose-dependent apoptotic effects on HepG2 cells with a concurrent cell cycle arrest in G2/M at the highest tested dose. Although prospective analyses are required to clarify the observed toxic effects of FSEO, our results support the hypothesis that the genotoxicity of estragole may be significantly reduced or null in the context of botanical mixtures.


Subject(s)
Anisoles/toxicity , Foeniculum/chemistry , Oils, Volatile/toxicity , Plant Extracts/toxicity , Allylbenzene Derivatives , Anisoles/analysis , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , DNA Damage/drug effects , Hep G2 Cells , Humans , Oils, Volatile/analysis , Plant Extracts/analysis , Seeds/chemistry , Spices/analysis , Spices/toxicity
13.
Sci Total Environ ; 613-614: 773-782, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28942312

ABSTRACT

Industrial fermentations for the production of pharmaceuticals generate large volumes of wastewater that can be biologically treated to recover plant nutrients through the application of pharmaceutical-derived wastes to the soil. Nevertheless, benefits and risks associated with their recovery are still unexplored. Thus, the aim of the present work was to characterize three potential organic residues (sludge, anaerobic digestate and compost) derived from the wastewater generated by the daptomycin production process. The main parameters evaluated were the physico-chemical properties, potential contaminants (heavy metals, pathogens and daptomycin residues), organic matter stabilization and the potential toxicity towards soil microorganisms and plants. The results showed that all the studied materials were characterized by high concentrations of plant macronutrients (N, P and K), making them suitable for agricultural reuse. Heavy metal contents and pathogens were under the limits established by European and Italian legislations, avoiding the risk of soil contamination. The compost showed the highest organic matter stabilization within the studied materials, whereas the sludge and the anaerobic digestate were characterized by large amounts of labile organic compounds. Although the pharmaceutical-derived fertilizers did not negatively affect the soil microorganisms, as demonstrated by the enzymatic activities, the sludge and the anaerobic digestate caused a moderate and strong phytotoxicity, respectively. The compost showed no toxic effect towards plant development and, moreover, it positively affected the germination and growth in lettuce and barley. The results obtained in the present study demonstrate that the valorization of pharmaceutical-derived materials through composting permits their agricultural reuse and also represents a suitable strategy to move towards a zero-waste production process for daptomycin.


Subject(s)
Agriculture , Fertilizers , Sewage/analysis , Waste Products/analysis , Drug Industry , Industrial Waste , Risk Assessment , Soil , Wastewater
14.
BMC Plant Biol ; 17(1): 118, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28693415

ABSTRACT

BACKGROUND: Bois noir is an important disease of grapevine (Vitis vinifera L.), caused by phytoplasmas. An interesting, yet elusive aspect of the bois noir disease is "recovery", i.e., the spontaneous and unpredictable remission of symptoms and damage. Because conventional pest management is ineffective against bois noir, deciphering the molecular bases of recovery is beneficial. The present study aimed to understand whether salicylate- and jasmonate-defence pathways might have a role in the recovery from the bois noir disease of grapevine. RESULTS: Leaves from healthy, bois noir-diseased and bois noir-recovered plants were compared, both in the presence (late summer) and absence (late spring) of bois noir symptoms on the diseased plants. Analyses of salicylate and jasmonate contents, as well as the expression of genes involved in their biosynthesis, signalling and action, were evaluated. In symptomatic diseased plants (late summer), unlike symptomless plants (late spring), salicylate biosynthesis was increased and salicylate-responsive genes were activated. In contrast, jasmonate biosynthesis and signalling genes were up-regulated both in recovered and diseased plants at all sampling dates. The activation of salicylate signalling in symptomatic plants might have antagonised the jasmonate-mediated defence response by suppressing the expression of jasmonate-responsive genes. CONCLUSIONS: Our results suggest that grapevine reacts to phytoplasma infection through salicylate-mediated signalling, although the resultant full activation of a salicylate-mediated response is apparently ineffective in conferring resistance against bois noir disease. Activation of the salicylate signalling pathway that is associated with the presence of bois noir phytoplasma seems to antagonise the jasmonate defence response, by failing to activate or suppressing both the expression of some jasmonate responsive genes that act downstream of the jasmonate biosynthetic pathway, as well as the first events of the jasmonate signalling pathway. On the other hand, activation of the entire jasmonate signalling pathway in recovered plants suggests the potential importance of jasmonate-regulated defences in preventing bois noir phytoplasma infections and the subsequent development of bois noir disease. Thus, on one hand, recovery could be achieved and maintained over time by preventing the activation of defence genes associated with salicylate signalling, and on the other hand, by activating jasmonate signalling and other defence responses.


Subject(s)
Acetates/metabolism , Cyclopentanes/metabolism , Host-Pathogen Interactions , Oxylipins/metabolism , Phytoplasma/physiology , Salicylates/metabolism , Vitis/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Plant Diseases , Plant Leaves/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Up-Regulation , Vitis/genetics , Vitis/immunology
15.
Sci Rep ; 5: 12449, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26207993

ABSTRACT

Water saving under drought stress is assured by stomatal closure driven by active (ABA-mediated) and/or passive (hydraulic-mediated) mechanisms. There is currently no comprehensive model nor any general consensus about the actual contribution and relative importance of each of the above factors in modulating stomatal closure in planta. In the present study, we assessed the contribution of passive (hydraulic) vs active (ABA mediated) mechanisms of stomatal closure in V. vinifera plants facing drought stress. Leaf gas exchange decreased progressively to zero during drought, and embolism-induced loss of hydraulic conductance in petioles peaked to ~50% in correspondence with strong daily limitation of stomatal conductance. Foliar ABA significantly increased only after complete stomatal closure had already occurred. Rewatering plants after complete stomatal closure and after foliar ABA reached maximum values did not induced stomatal re-opening, despite embolism recovery and water potential rise. Our data suggest that in grapevine stomatal conductance is primarily regulated by passive hydraulic mechanisms. Foliar ABA apparently limits leaf gas exchange over long-term, also preventing recovery of stomatal aperture upon rewatering, suggesting the occurrence of a mechanism of long-term down-regulation of transpiration to favor embolism repair and preserve water under conditions of fluctuating water availability and repeated drought events.


Subject(s)
Abscisic Acid/metabolism , Plant Growth Regulators/metabolism , Plant Stomata/physiology , Plant Transpiration/physiology , Vitis/physiology , Water/metabolism , Adaptation, Physiological , Biological Transport , Droughts , Mechanotransduction, Cellular/physiology , Plant Stomata/drug effects , Plant Transpiration/drug effects , Vitis/drug effects , Water/pharmacology
16.
J Nat Prod ; 78(5): 1184-8, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25966052

ABSTRACT

A chemical study of the nonpolar fraction of a methanol-soluble extract of Bursera microphylla resin yielded a variety of di- and triterpenoids. In total, 15 compounds were isolated, of which three are new, namely, malabaricatrienone (1), malabaricatrienol (2), and microphyllanin (3). The antiproliferative activity of the major compounds was evaluated in different murine cancer cell lines (M12.C3.F6 and RAW264.7) and human cancer cells (A549, HeLa, and PC-3). The new compounds (1-3) did not show significant antiproliferative activity. The known compounds ariensin (4), burseran (5), and dihydroclusin diacetate (6) were effective against the RAW264.7 cell line, with IC50 values in the micromolar range.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Bursera/chemistry , Diterpenes/isolation & purification , Resins, Plant/chemistry , Triterpenes/isolation & purification , Animals , Antineoplastic Agents, Phytogenic/chemistry , Diterpenes/chemistry , Drug Screening Assays, Antitumor , Furans/pharmacology , HeLa Cells , Humans , Lignans/pharmacology , Mexico , Mice , Molecular Structure , Plant Extracts/chemistry , Triterpenes/chemistry
17.
Waste Manag Res ; 31(8): 869-73, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23444150

ABSTRACT

An experimental apparatus was constructed to perform hybrid solid anaerobic digestion batch processing of the organic fraction of municipal solid waste. The preliminary process was carried out with a high total solids concentration of about 33% w w(-1) and with an initial organic load of about 340 kg VS kg(-1). The fresh organic fraction to inoculum ratio used to enhance the anaerobic process start-up was 0.910 kg VS kg VS(-1). The process was conducted by spreading the percolate on top of the mixture. The percolate was stored in a separate section of the apparatus with a mean hydraulic retention time of about 1 day. During the process, acetate, butyrate and propionate in the percolate reached concentrations ranging from 3000 to 11 000 mg L(-1). In spite of these high concentrations, the biomethane produced from both the solid and the percolate was quite high, at about 210 NL kg VS(-1). The digestate obtained at the end of the run showed rather good features for being classified as an organic fertilizer according to Italian law. However, a residual phytotoxicity level was detected by a standardized test showing a germination index of about 50%.


Subject(s)
Methane/metabolism , Refuse Disposal , Anaerobiosis
18.
Plant Physiol Biochem ; 52: 9-20, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22305063

ABSTRACT

Plant injuries activate signal transduction cascades mediated by the plant hormones, which lead to enhanced expression of defence related genes and/or to changes in the emission of volatile organic compounds that can act as semiochemicals. In this research we demostrated that infection with the biotrophic pathogen Golovinomyces cichoracearum (DC.) V.P. Heluta (ex Erysiphe cichoracearum DC.), the causal agent of powdery mildew, led in the susceptible host Nicotiana tabacum L. cv Havana 425 to an increased emission of volatile compounds including Methyl-jasmonate (MeJA), (E)-2-hexenal and (E)-ß-ocimene. Furthermore we investigated the role of these volatiles in the plant-pathogen interaction. Exogenous application of MeJA induced in tobacco an increase in the transcripts level of the defence related genes lipoxygenase, allene oxide cyclase and defensin and a decrease in the severity of the infection. Qualitative and quantitative differences in volatile compounds emission were showed also in MeJA-treated plants, where the emission of (E)-ß-ocimene was significantly increased instead (E)-2-hexenal was not detected. Application of (E)-2-hexenal reduced the severity of powdery mildew while application of (E)-ß-ocimene did not. Since (E)-2-hexenal did not activate in tobacco the accumulation of the above reported genes transcripts and the plant cell death, the reduction of the infection severity could be attributable to its inhibitory activity on the fungal germ tube growth. Our data highlight the contributions of natural substances that can act, directly or indirectly, against phytopathogens. In the global context of sustainability, food safety and environmental protection, such semiochemicals represent an alternative and promising approach to integrated pest management.


Subject(s)
Acetates/pharmacology , Ascomycota/physiology , Cyclopentanes/pharmacology , Nicotiana/physiology , Oils, Volatile/metabolism , Oxylipins/pharmacology , Plant Diseases/immunology , Plant Growth Regulators/pharmacology , Acetates/metabolism , Acyclic Monoterpenes , Aldehydes/metabolism , Alkenes/metabolism , Anti-Infective Agents/metabolism , Cyclopentanes/metabolism , Defensins/genetics , Defensins/metabolism , Gene Expression Regulation, Plant/drug effects , Host-Pathogen Interactions , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Lipoxygenase/genetics , Lipoxygenase/metabolism , Oxylipins/metabolism , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Plant Immunity/drug effects , Plant Leaves/drug effects , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Leaves/physiology , Plant Oils/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Signal Transduction/drug effects , Time Factors , Nicotiana/drug effects , Nicotiana/immunology , Nicotiana/microbiology
19.
Food Chem ; 134(3): 1327-36, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-25005950

ABSTRACT

Potassium metabisulphite (PMB) is a common antimicrobial additive in the food industry. In aqueous solutions, PMB leads to complex equilibria according to its concentration, pH and temperature, and different chemical species can be present. In winemaking, PMB is used at low pH, suggesting that the biocidic activity is exerted by sulphur dioxide while, in other applications, it is employed at higher pH values with little if any dissociation. This observation leads to the question of which chemical form is biologically active. For this reason, Saccharomyces cerevisiae cells were subjected to PMB solutions at different pH values and analysed with a Fourier transform infrared spectroscopy (FTIR)-based bioassay, to assess the entity and the type of stress. Cell viability was determined and compared to the metabolomics (FTIR) stress indices, which revealed that the metabolomics fingerprint was an effective description of the cell health state. GC-MS metabolite profiles were obtained to describe (in detail) the changes caused by PMB in the fatty acids region. Human dermal fibroblasts (HDF) were also subjected to PMB stress at pH 7.0 and analysed with the FTIR protocol, in order to compare the response spectra of yeast and human cell cultures.


Subject(s)
Dermis/metabolism , Fibroblasts/metabolism , Metabolomics , Saccharomyces cerevisiae/metabolism , Stress, Physiological/drug effects , Sulfites/pharmacology , Cell Survival/drug effects , Cells, Cultured , Dermis/cytology , Dermis/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Spectroscopy, Fourier Transform Infrared/methods
20.
BMC Genomics ; 11: 117, 2010 Feb 18.
Article in English | MEDLINE | ID: mdl-20167053

ABSTRACT

BACKGROUND: Downy mildew is a destructive grapevine disease caused by Plasmopara viticola (Berk. and Curt.) Berl. and de Toni, which can only be controlled by intensive fungicide treatments. Natural sources of resistance from wild grapevine (Vitis) species are used in conventional breeding approaches, but the signals and effectors involved in resistance in this important crop species are not well understood. RESULTS: Early transcriptional changes associated with P. viticola infection in susceptible V. vinifera and resistant V. riparia plants were analyzed using the Combimatrix microarray platform. Transcript levels were measured 12 and 24 h post-inoculation, reflecting the time points immediately preceding the onset of resistance in V. riparia, as determined by microscopic analysis. Our data indicate that resistance in V. riparia is induced after infection, and is not based on differences in basal gene expression between the two species. The strong and rapid transcriptional reprogramming involves the induction of pathogenesis-related proteins and enzymes required for the synthesis of phenylpropanoid-derived compounds, many of which are also induced, albeit to a lesser extent, in V. vinifera. More interestingly, resistance in V. riparia also involves the specific modulation of numerous transcripts encoding components of signal transduction cascades, hypersensitive reaction markers and genes involved in jasmonate biosynthesis. The limited transcriptional modulation in V. vinifera represents a weak attempted defense response rather than the activation of compatibility-specific pathways. CONCLUSIONS: Several candidate resistance genes were identified that could be exploited in future biotechnological approaches to increase disease resistance in susceptible grapevine species. Measurements of jasmonic acid and methyl jasmonate in infected leaves suggest that this hormone may also be involved in V. riparia resistance to P. viticola.


Subject(s)
Gene Expression Profiling , Immunity, Innate , Oomycetes/pathogenicity , Vitis/genetics , Acetates/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Host-Pathogen Interactions , Oligonucleotide Array Sequence Analysis , Oxylipins/metabolism , Plant Diseases/genetics , RNA, Plant/genetics , Signal Transduction , Species Specificity , Transcription, Genetic , Vitis/metabolism , Vitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL