Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 92020 12 21.
Article in English | MEDLINE | ID: mdl-33345777

ABSTRACT

Cell cycle progression and lipid metabolism are well-coordinated processes required for proper cell proliferation. In liver diseases that arise from dysregulated lipid metabolism, proliferation is diminished. To study the outcome of CDK1 loss and blocked hepatocyte proliferation on lipid metabolism and the consequent impact on whole-body physiology, we performed lipidomics, metabolomics, and RNA-seq analyses on a mouse model. We observed reduced triacylglycerides in liver of young mice, caused by oxidative stress that activated FOXO1 to promote expression of Pnpla2/ATGL. Additionally, we discovered that hepatocytes displayed malfunctioning ß-oxidation, reflected by increased acylcarnitines (ACs) and reduced ß-hydroxybutyrate. This led to elevated plasma free fatty acids (FFAs), which were transported to the adipose tissue for storage and triggered greater insulin secretion. Upon aging, chronic hyperinsulinemia resulted in insulin resistance and hepatic steatosis through activation of LXR. Here, we demonstrate that loss of hepatocyte proliferation is not only an outcome but also possibly a causative factor for liver pathology.


Subject(s)
CDC2 Protein Kinase/physiology , Cell Division/physiology , Hepatocytes/physiology , Hyperinsulinism/metabolism , Lipid Metabolism , Adipose Tissue/chemistry , Adipose Tissue/metabolism , Animals , CDC2 Protein Kinase/metabolism , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Hepatocytes/metabolism , Insulin Resistance , Liver/chemistry , Liver/metabolism , Liver/physiology , Liver Diseases/etiology , Liver Diseases/metabolism , Male , Mice , Mice, Knockout , Oxidative Stress
2.
PLoS Genet ; 16(11): e1009084, 2020 11.
Article in English | MEDLINE | ID: mdl-33147210

ABSTRACT

The liver possesses a remarkable regenerative capacity based partly on the ability of hepatocytes to re-enter the cell cycle and divide to replace damaged cells. This capability is substantially reduced upon chronic damage, but it is not clear if this is a cause or consequence of liver disease. Here, we investigate whether blocking hepatocyte division using two different mouse models affects physiology as well as clinical liver manifestations like fibrosis and inflammation. We find that in P14 Cdk1Liv-/- mice, where the division of hepatocytes is abolished, polyploidy, DNA damage, and increased p53 signaling are prevalent. Cdk1Liv-/- mice display classical markers of liver damage two weeks after birth, including elevated ALT, ALP, and bilirubin levels, despite the lack of exogenous liver injury. Inflammation was further studied using cytokine arrays, unveiling elevated levels of CCL2, TIMP1, CXCL10, and IL1-Rn in Cdk1Liv-/- liver, which resulted in increased numbers of monocytes. Ablation of CDK2-dependent DNA re-replication and polyploidy in Cdk1Liv-/- mice reversed most of these phenotypes. Overall, our data indicate that blocking hepatocyte division induces biological processes driving the onset of the disease phenotype. It suggests that the decrease in hepatocyte division observed in liver disease may not only be a consequence of fibrosis and inflammation, but also a pathological cue.


Subject(s)
Cell Division/physiology , Hepatocytes/physiology , Liver Cirrhosis/metabolism , Animals , Apoptosis/physiology , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Cycle , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Fibrosis/physiopathology , Hepatitis/metabolism , Hepatitis/physiopathology , Hepatocytes/metabolism , Inflammation/pathology , Liver/metabolism , Liver/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Male , Mice , Mice, Knockout , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL