Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 55(94): 14186-14189, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31701965

ABSTRACT

Fluoreno[2,1-a]fluorene, a molecule comprising fused ortho-quinodimethane units in a 1,5-napthoquinodimethane core, has been prepared and investigated with spectroscopy (UV-Vis-NIR, 1H-NMR and Raman), SQUID magnetometry, spectroelectrochemistry and quantum chemistry. While para-quinodimethanes with a 2,6-substitution pattern exist as closed-shell species and meta-quinodimethanes with 2,7-substitution favour a ground electronic state with very large diradical character, our 1,5-substituted ortho-naphthoquinodimethane-based system exhibits an intermediate degree of diradical character.

2.
Nat Commun ; 10(1): 4983, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31676760

ABSTRACT

The scientific significance of excited-state aromaticity concerns with the elucidation of processes and properties in the excited states. Here, we focus on TMTQ, an oligomer composed of a central 1,6-methano[10]annulene and 5-dicyanomethyl-thiophene peripheries (acceptor-donor-acceptor system), and investigate a two-electron transfer process dominantly stabilized by an aromatization in the low-energy lying excited state. Our spectroscopic measurements quantitatively observe the shift of two π-electrons between donor and acceptors. It is revealed that this two-electron transfer process accompanies the excited-state aromatization, producing a Baird aromatic 8π core annulene in TMTQ. Biradical character on each terminal dicyanomethylene group of TMTQ allows a pseudo triplet-like configuration on the 8π core annulene with multiexcitonic nature, which stabilizes the energetically unfavorable two-charge separated state by the formation of Baird aromatic core annulene. This finding provides a comprehensive understanding of the role of excited-state aromaticity and insight to designing functional photoactive materials.

3.
J Am Chem Soc ; 141(18): 7421-7427, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30998349

ABSTRACT

A cycloparaphenylene-based molecular lemniscate (CPPL) was obtained in a short synthesis involving masked p-phenylene equivalents. The strained figure-eight geometry of CPPL is sustained by the incorporated 9,9'-bicarbazole subunit, which also acts as a stereogenic element. The shape of the distorted [16]cycloparaphenylene nanohoop embedded in CPPL is accurately approximated with a Booth lemniscate. The structure of CPPL, investigated using NMR and Raman spectroscopic methods, revealed strain-dependent features, consistent with the variable curvature of the ring. The electronic and optical properties of CPPL combine features more characteristic of smaller cycloparaphenylenes, such as a reduced optical bandgap and red-shifted fluorescence. CPPL was resolved into enantiomers, which are configurationally stable and provide strong chiroptical responses, including circularly polarized luminescence.

4.
Chem Sci ; 10(9): 2743-2749, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30996992

ABSTRACT

Acenes have received a lot of attention because of their inherent and tunable absorbing, emissive, and charge transport properties for electronic, photovoltaic, and singlet fission applications, among others. Such properties are directly governed by molecular packing, and therefore, controlling their arrangement in the solid state is of utmost importance in order to increase their performance. Herein, we describe a new solid-state ordering strategy that allows obtaining 1D mixed π-stacks of acene and azaacene derivatives. In addition, we illustrate that charge transport can be modulated by the electronic nature of the encapsulated phenazine, opening new perspectives in the design, preparation and development of supramolecular organic semiconductors.

5.
Phys Chem Chem Phys ; 21(14): 7281-7287, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30860226

ABSTRACT

Oligorylenes have been the focus of research during the journey toward intrinsically conducting polyrylene. Recently, the description of diradicaloid and tetraradicaloid properties in long oligorylene molecules has revived the old question about their electronic structures which is of current interest in the context of the properties of graphene nanoribbons. Here we show that the armchair edges of smaller oligorylenes are embedded within aromatic units and they transform into armchair cis-polyacetylenic structures for octarylene and longer. Concomitantly, the short zig-zag edges of oligorylenes stabilize diradicaloid and multiradical states. This electronic transformation is proved experimentally by Raman spectroscopy and supported by theoretical modelling.

6.
J Am Chem Soc ; 140(33): 10562-10569, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30040405

ABSTRACT

"Breathing" metal-organic frameworks (MOFs) that involve changes in their structural and physical properties upon an external stimulus are an interesting class of crystalline materials due to their range of potential applications including chemical sensors. The addition of redox activity opens up a new pathway for multifunctional "breathing" frameworks. Herein, we report the continuous breathing behavior of a tetrathiafulvalene (TTF)-based MOF, namely MUV-2, showing a reversible swelling (up to ca. 40% of the volume cell) upon solvent adsorption. Importantly, the planarity of the TTF linkers is influenced by the breathing behavior of the MOF, directly impacting on its electrochemical properties and thus opening the way for the development of new electrochemical sensors. Quantum chemical calculations and Raman spectroscopy have been used to provide insights into the tunability of the oxidation potential.

7.
Chemistry ; 24(19): 4944-4951, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29396877

ABSTRACT

The synthesis of stable open-shell singlet diradicaloids is critical for their practical material application. So far, most reported examples are based on carbon-centered radicals, which are intrinsically reactive, and there are very few examples of stable nitrogen-centered diradicaloids. In this full paper, a series of soluble and stable bis(imino)rylenes up to octarylene were synthesized on the basis of newly developed dibromorylene intermediates. It was found that from hexarylene onward, these quinoidal rylenes showed open-shell singlet ground states and could be thermally populated to paramagnetic triplet aminyl diradicals. They are stable due to efficient spin delocalization onto the rylene backbone as well as kinetic blocking of the aminyl sites by the bulky and electron-deficient 2,4,6-trichlorophenyl groups. They exhibited very different electronic structures, diradical character, excited-state dynamics, one-photon absorption, two-photon absorption, and electrochemical properties from their respective aromatic rylene counterparts. These bis(imino)rylenes represent a rare class of stable, neutral, nitrogen-centered aminyl diradicaloids.

8.
Chemistry ; 23(46): 11141-11146, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28590076

ABSTRACT

The chiroptical features of supramolecular polymers formed from N-heterotriangulenes 1-3 have been investigated by circular dichroism (ECD) and vibrational circular dichroism (VCD) techniques. In solution, the CD spectra demonstrate that the helicity of the aggregates depends on only the stereogenic centres located at the peripheral chains. In the gel state, the chiroptical features are conditioned by the point chirality of the stereogenic centres and by the achiral solvent utilised. Sonication of the gels formed in CCl4 reveals both kinetic and thermodynamic phases. These findings reveal the presence of pathway complexity in the gel state triggered by sonication. The described solvent-induced helical stereomutation demonstrates that the gel state can be utilised as an outstanding benchmark for investigating uncommon chiroptical effects and to explore the rules of chirality transmission.

9.
J Am Chem Soc ; 139(8): 3095-3105, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28170229

ABSTRACT

New stilbenoid and thiophenic compounds terminally functionalized with donor-donor, acceptor-acceptor, or donor-acceptor moieties and possessing a central [2.2]paracyclophane unit have been prepared, and their properties interpreted in terms of through-bond and through space π-electron delocalization (i.e., π-conjugations). Based on photophysical data, their excited-state properties have been described with a focus on the participation of the central [2.2]paracyclophane in competition with through-bond conjugation in the side arms. To this end, two-photon and one-photon absorption and emission spectroscopy, as a function of temperature, solvent polarity, and pressure in the solid state have been recorded. Furthermore, charge delocalization through the [2.2]paracyclophane in the neutral state and in the oxidized species (radical cations, dications and radical trications) has been investigated, allowing the elucidation of the vibrational Raman fingerprint of through-space charge delocalization. Thus, a complementary approach to both "intermolecular" excitation and charge delocalizations in [2.2]paracyclophane molecules is shown which can serve as models of charge and exciton migration in organic semiconductors.

10.
Chem Sci ; 8(12): 8106-8114, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29568459

ABSTRACT

A new series of π-conjugated oligomers based on the 4,4 dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene vinylene repeating unit has been prepared and characterized by X-ray, electrochemical, spectroscopic (UV-Vis absorption, emission and Raman) and density functional theory methods. The oligomers in their neutral, oxidized and reduced forms have been investigated. The neutral compounds show a longer mean conjugation length than oligothiophenes and oligothiophene-vinylenes and display very rich redox chemistry with the stabilization of polycationic states of which the radical cations and dications are strong NIR absorbers, the latter displaying singlet diradicaloid character. An interesting complementarity between the sequence of aromatic-quinoidal structural segments in the radical cations and dications has been described and interpreted. Two derivatives with the 4,4 dihexyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene vinylene unit, disubstituted either with electron donor, bis(triaryl amino) groups, or acceptors bis(dicyano-methylene) caps enforcing a quinoidal structure in the dithiophene-vinylene bridge, have been also synthesized and characterized. The radical cation of the triarylamine compound and the radical anion of the tetracyano compound similarly display hole and electron charge localization, or confinement, in the nitrogen and dicyano surrounding parts, or class II mixed valence systems, while their dication and dianion species, conversely, are open-shell diradical (i.e., polaron pair) and closed-shell (i.e., bipolaron), respectively. The preparation of these new π-conjugated oligomers gives way to the realization of compounds with new electronic properties and unique structures potentially exploitable in organic electronics.

11.
Chemistry ; 23(19): 4579-4589, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28000319

ABSTRACT

We have synthesized two isomeric pairs of benzo- and naphthodithiophenediones with two flanking thiophenes and characterized them by single-crystal X-ray analysis, cyclic voltammetry, steady-state optical electronic absorption and emission spectroscopies, transient absorption spectroscopy, and vibrational spectroscopies with in situ spectroelectrochemistry techniques, and then compared them with the thieno[3,2-b]thiophene-2,5-dione counterpart that we previously reported. The results show that the central acenedithiophenedione cores have quinoidal conjugation with closed-shell character. The π-extension of the quinoidal core raises (lowers) the HOMO (LUMO) energy levels of the triads, resulting in the drastic reduction of their energy gaps from approximately 2.0 eV to 1.1 eV. Owing to the electron-withdrawing nature of the carbonyl terminal group at the quinoidal core, the triads have low-lying LUMO energy levels ranging from -3.9 eV to -4.3 eV, and can be regarded as strong electron-acceptor building units. Interestingly, the pairs of structural isomers have similar electronic structures in both the neutral and charged states despite the different shapes (linear and angular) and/or symmetry (C2h and C2v ) of the acenedithiophenedione cores.

12.
Angew Chem Int Ed Engl ; 56(9): 2250-2259, 2017 02 20.
Article in English | MEDLINE | ID: mdl-27862823

ABSTRACT

The vibrational Raman spectra of several series of aromatic and quinoidal compounds have been analyzed considering the downshifts and upshifts of the frequencies of the relevant Raman bands as a function of the number of repeating units. Oligothiophenes, oligophenylene-vinylenes, and oligoperylenes (oligophenyls) derivatives are studied in a common context. These shifts are taken as spectroscopic fingerprints of the changes in π-conjugation. For a given family, aromatic and quinoidal oligomers have been studied together, and according to their Raman frequency shifts located in the two-well BLA-energy curve of their ground electronic state as a function of the bond-length-alternation pattern (BLA). The connection among BLA values, π-conjugation, and Raman frequencies is taken here as the basis of the study. These Raman shifts/BLA changes have been related to important electronic properties of these one-dimensional linear π-electron delocalized systems such as quinoidal (polyene) and aromatic characters.

13.
Angew Chem Int Ed Engl ; 55(47): 14563-14568, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27781355

ABSTRACT

Conducting polymers can be synthesized by irreversible diradical monomer polymerization. A reversible version of this reaction consisting of the formation/dissociation of σ-dimers and σ-polymers from a stable quinonoidal diradical precursor is described. The reaction reversibility is made by a quinonoidal molecule which changes its structure to an aromatic species by forming weak and long intermolecular C-C single bonds. The reaction provokes a giant chromic effect of about 2.5 eV. The two opposite but complementary quinonoidal and aromatic tautomers provide the Janus faces of the reactants and products which produces the observed chromic effect. A reaction mechanism is proposed to explain the variety of final products starting with structurally very similar reactants. These reversible reactions, covering an unusual regime of weak covalent supramolecular bonding, yield products which might be envisaged as novel molecular and polymeric soft matter phases.

14.
J Am Chem Soc ; 138(38): 12648-54, 2016 09 28.
Article in English | MEDLINE | ID: mdl-27573478

ABSTRACT

The reduced and oxidized states of an open-shell diindeno[b,i]anthracene (DIAn) derivative have been investigated by experimental and theoretical techniques. As a result of moderate biradical character and the ability of cyclopenta-fused scaffolds to stabilize both positive and negative charges, DIAn exhibits rich redox chemistry with four observable and isolable charged states. Structural and electronic properties of the DIAn system are brought to light by UV-vis-NIR and Raman spectroelectrochemical measurements. Aromatization of the diindeno-fused anthracene core upon successive single-electron injections is revealed through single-crystal X-ray diffraction of radical anion and dianion salts. We present a rare case where the pseudoaromatic/quinoidal ground state of a neutral biradical polycyclic hydrocarbon leads to a stable cascade of five redox states. Our detailed investigation of the transformation of molecular structure along all four redox events provides a clearer understanding of the nature of charge carriers in ambipolar organic field-effect transistors.

15.
Nat Chem ; 8(8): 753-9, 2016 08.
Article in English | MEDLINE | ID: mdl-27442280

ABSTRACT

The consequence of unpaired electrons in organic molecules has fascinated and confounded chemists for over a century. The study of open-shell molecules has been rekindled in recent years as new synthetic methods, improved spectroscopic techniques and powerful computational tools have been brought to bear on this field. Nonetheless, it is the intrinsic instability of the biradical species that limits the practicality of this research. Here we report the synthesis and characterization of a molecule based on the diindeno[b,i]anthracene framework that exhibits pronounced open-shell character yet possesses remarkable stability. The synthetic route is rapid, efficient and possible on the gram scale. The molecular structure was confirmed through single-crystal X-ray diffraction. From variable-temperature Raman spectroscopy and magnetic susceptibility measurements a thermally accessible triplet excited state was found. Organic field-effect transistor device data show an ambipolar performance with balanced electron and hole mobilities. Our results demonstrate the rational design and synthesis of an air- and temperature-stable biradical compound.


Subject(s)
Anthracenes/chemistry , Anthracenes/chemical synthesis , Free Radicals/chemistry , Chemistry, Organic , Crystallography, X-Ray , Electrons , Magnetics , Models, Molecular , Molecular Structure , Temperature
17.
J Am Chem Soc ; 138(24): 7782-90, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27248181

ABSTRACT

While the chemistry of open-shell singlet diradicaloids has been successfully developed in recent years, the synthesis of π-conjugated systems with poly-radical characters (i.e., beyond diradical) in the singlet ground state has been mostly unsuccessful. In this study, we report the synthesis and isolation of two fully fused macrocycles containing four (4MC) and six (6MC) alternatingly arranged quinoidal/aromatic carbazole units. Ab initio electronic structure calculations and various experimental measurements indicate that both 4MC and 6MC have an open-shell singlet ground state with moderate tetraradical and hexaradical characters, respectively. Both compounds can be thermally populated to high-spin excited states, resulting in weak magnetization at room temperature. Our study represents the first demonstration of singlet π-conjugated molecules with poly-radical characters and also gives some insights into molecular magnetism in neutral π-conjugated polycyclic heteroarenes.

18.
Angew Chem Int Ed Engl ; 54(20): 5888-93, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25833411

ABSTRACT

Within the continuum of π-extended quinoidal electronic structures exist molecules that by design can support open-shell diradical structures. The prevailing molecular design criteria for such structures involve proaromatic nature that evolves aromaticity in open-shell diradical resonance structures. A new diradical species built upon a quinoidal methano[10]annulene unit is synthesized and spectroscopically evaluated. The requisite intersystem crossing in the open-shell structure is accompanied by structural reorganization from a contorted Möbius aromatic-like shape in S0 to a more planar shape in the Hückel aromatic-like T1. This stability was attributed to Baird's Rule which dictates the aromaticity of 4n π-electron triplet excited states.

20.
J Am Chem Soc ; 135(16): 6363-71, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23560651

ABSTRACT

p-Quinodimethane (p-QDM) is a fundamental building block for the design of π-conjugated systems with low band gap and open-shell biradical character. However, synthesis of extended p-QDMs has usually suffered from their intrinsic high reactivity and poor solubility. In this work, benzannulation together with terminal cyano-substitution was demonstrated to be an efficient approach for the synthesis of a series of soluble and stable tetracyano-oligo(N-annulated perylene)quinodimethanes nPer-CN (n = 1-6), with the longest molecule having 12 para-linked benzenoid rings! The geometry and electronic structures of these oligomers were investigated by steady-state and transient absorption spectroscopy, nuclear magnetic resonance, electron spin resonance, superconducting quantum interference device, and FT Raman spectroscopy assisted by density functional theory calculations. They showed tunable ground states, varying from a closed-shell quinoidal structure for monomer, to a singlet biradical for dimer, trimer, and tetramer, and to a triplet biradical for pentamer and hexamer. Large two-photon absorption cross-section values were observed in the near-infrared range, which also exhibited a clear chain-length dependence.

SELECTION OF CITATIONS
SEARCH DETAIL
...