Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 619(7969): 348-356, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37344597

ABSTRACT

The role of B cells in anti-tumour immunity is still debated and, accordingly, immunotherapies have focused on targeting T and natural killer cells to inhibit tumour growth1,2. Here, using high-throughput flow cytometry as well as bulk and single-cell RNA-sequencing and B-cell-receptor-sequencing analysis of B cells temporally during B16F10 melanoma growth, we identified a subset of B cells that expands specifically in the draining lymph node over time in tumour-bearing mice. The expanding B cell subset expresses the cell surface molecule T cell immunoglobulin and mucin domain 1 (TIM-1, encoded by Havcr1) and a unique transcriptional signature, including multiple co-inhibitory molecules such as PD-1, TIM-3, TIGIT and LAG-3. Although conditional deletion of these co-inhibitory molecules on B cells had little or no effect on tumour burden, selective deletion of Havcr1 in B cells both substantially inhibited tumour growth and enhanced effector T cell responses. Loss of TIM-1 enhanced the type 1 interferon response in B cells, which augmented B cell activation and increased antigen presentation and co-stimulation, resulting in increased expansion of tumour-specific effector T cells. Our results demonstrate that manipulation of TIM-1-expressing B cells enables engagement of the second arm of adaptive immunity to promote anti-tumour immunity and inhibit tumour growth.


Subject(s)
B-Lymphocytes , Melanoma , Animals , Mice , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Lymphocyte Activation , Melanoma/immunology , Melanoma/pathology , Melanoma/prevention & control , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Flow Cytometry , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Lymph Nodes/cytology , Lymph Nodes/immunology , Antigen Presentation , Receptors, Antigen, B-Cell/genetics , Single-Cell Gene Expression Analysis , Tumor Burden , Interferon Type I
2.
Cell ; 184(16): 4168-4185.e21, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34216539

ABSTRACT

Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic status of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate metabolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in CNS autoimmunity.


Subject(s)
Autoimmunity/immunology , Models, Biological , Th17 Cells/immunology , Acetyltransferases/metabolism , Adenosine Triphosphate/metabolism , Aerobiosis/drug effects , Algorithms , Animals , Autoimmunity/drug effects , Chromatin/metabolism , Citric Acid Cycle/drug effects , Cytokines/metabolism , Eflornithine/pharmacology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Epigenome , Fatty Acids/metabolism , Glycolysis/drug effects , Jumonji Domain-Containing Histone Demethylases/metabolism , Mice, Inbred C57BL , Mitochondrial Membrane Transport Proteins/metabolism , Oxidation-Reduction/drug effects , Putrescine/metabolism , Single-Cell Analysis , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Th17 Cells/drug effects , Transcriptome/genetics
3.
Sci Adv ; 7(18)2021 04.
Article in English | MEDLINE | ID: mdl-33931442

ABSTRACT

T cell exhaustion has been associated with poor prognosis in persistent viral infection and cancer. Conversely, in the context of autoimmunity, T cell exhaustion has been favorably correlated with long-term clinical outcome. Understanding the development of exhaustion in autoimmune settings may provide underlying principles that can be exploited to quell autoreactive T cells. Here, we demonstrate that the adaptor molecule Bat3 acts as a molecular checkpoint of T cell exhaustion, with deficiency of Bat3 promoting a profound exhaustion phenotype, suppressing autoreactive T cell-mediated neuroinflammation. Mechanistically, Bat3 acts as a critical mTORC2 inhibitor to suppress Akt function. As a result, Bat3 deficiency leads to increased Akt activity and FoxO1 phosphorylation, indirectly promoting Prdm1 expression. Transcriptional analysis of Bat3 -/- T cells revealed up-regulation of dysfunction-associated genes, concomitant with down-regulation of genes associated with T cell effector function, suggesting that absence of Bat3 can trigger T cell dysfunction even under highly proinflammatory autoimmune conditions.

5.
Nat Commun ; 6: 6072, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25614966

ABSTRACT

The inhibitory receptor T-cell immunoglobulin and mucin domain-3 (Tim-3) has emerged as a critical regulator of the T-cell dysfunction that develops in chronic viral infections and cancers. However, little is known regarding the signalling pathways that drive Tim-3 expression. Here, we demonstrate that interleukin (IL)-27 induces nuclear factor, interleukin 3 regulated (NFIL3), which promotes permissive chromatin remodelling of the Tim-3 locus and induces Tim-3 expression together with the immunosuppressive cytokine IL-10. We further show that the IL-27/NFIL3 signalling axis is crucial for the induction of Tim-3 in vivo. IL-27-conditioned T helper 1 cells exhibit reduced effector function and are poor mediators of intestinal inflammation. This inhibitory effect is NFIL3 dependent. In contrast, tumour-infiltrating lymphocytes from IL-27R(-/-) mice exhibit reduced NFIL3, less Tim-3 expression and failure to develop dysfunctional phenotype, resulting in better tumour growth control. Thus, our data identify an IL-27/NFIL3 signalling axis as a key regulator of effector T-cell responses via induction of Tim-3, IL-10 and T-cell dysfunction.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , CD4-Positive T-Lymphocytes/immunology , Interleukin-10/metabolism , Interleukin-27/metabolism , Receptors, Virus/metabolism , Signal Transduction , Animals , Chromatin/metabolism , Clonal Anergy/immunology , Gastrointestinal Tract/pathology , Hepatitis A Virus Cellular Receptor 2 , Inflammation/immunology , Inflammation/pathology , Interleukin-27/deficiency , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/pathology , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , T-Box Domain Proteins/metabolism
6.
J Immunol ; 190(12): 6004-14, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23686493

ABSTRACT

Dendritic cells (DCs) have been shown to play a major role in oral tolerance, and this function has been associated with their ability to produce anti-inflammatory cytokines and to induce suppressive regulatory T cells. In this study, we demonstrate that upon oral administration of Ag, lamina propia (LP) DCs engage specific T cells and acquire a novel mechanism by which they transfer tolerance against diverse T cell specificities. Indeed, when Ig-myelin oligodendrocyte glycoprotein (MOG) carrying the MOG(35-55) epitope was orally administered into either T cell-sufficient or -deficient mice, only the T cell-sufficient hosts yielded CD8α(+) and CD8α(-) LP DCs that were able to transfer tolerance to a variety of MHC class II-restricted effector T cells. Surprisingly, these LP DCs upregulated programmed cell death ligand 1 during the initial interaction with MOG-specific T cells and used this inhibitory molecule to suppress activation of T cells regardless of Ag specificity. Furthermore, oral Ig-MOG was able to overcome experimental autoimmune encephalomyelitis induced with CNS homogenate, indicating that the DCs are able to modulate disease involving diverse T cell specificities. This previously unrecognized attribute potentiates DCs against autoimmunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Immune Tolerance/immunology , Immunity, Mucosal/immunology , Mucous Membrane/immunology , Administration, Oral , Adoptive Transfer , Animals , Autoantigens/immunology , Autoimmunity/immunology , Cell Separation , Encephalomyelitis, Autoimmune, Experimental/immunology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Immunity, Innate/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Myelin-Oligodendrocyte Glycoprotein/immunology , Peptide Fragments/administration & dosage , Peptide Fragments/immunology
7.
Diabetes ; 62(8): 2879-89, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23715620

ABSTRACT

Immune modulation of pancreatic inflammation induces recovery from type 1 diabetes (T1D), but remission was not durable, perhaps because of an inability to sustain the formation and function of new pancreatic ß-cells. We have previously shown that Ig-GAD2, carrying GAD 206-220 peptide, induced in hyperglycemic mice immune modulation that was able to control pancreatic inflammation, stimulate ß-cell regeneration, and prevent T1D progression. Herein, we show that the same Ig-GAD2 regimen given to mice with overt T1D was unable to reverse the course of disease despite eradication of Th1 and Th17 cells from the pancreas. However, the regimen was able to sustain recovery from T1D when Ig-GAD2 was accompanied with transfer of bone marrow (BM) cells from healthy donors. Interestingly, alongside immune modulation, there was concomitant formation of new ß-cells and endothelial cells (ECs) in the pancreas. The new ß-cells were of host origin while the donor BM cells gave rise to the ECs. Moreover, transfer of purified BM endothelial progenitors instead of whole BM cells sustained both ß-cell and EC formation and reversal of diabetes. Thus, overcoming T1D requires both immune modulation and repair of the islet vascular niche to preserve newly formed ß-cells.


Subject(s)
B-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Endothelial Cells/immunology , Immune Tolerance/immunology , Islets of Langerhans/immunology , Animals , Bone Marrow Transplantation , Disease Progression , Immunoglobulins/immunology , Inflammation/immunology , Mice , Mice, Inbred NOD , Regeneration
8.
J Immunol ; 188(7): 3208-16, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22351937

ABSTRACT

The earliest thymic progenitors (ETPs) were recently shown to give rise to both lymphoid and myeloid cells. Whereas the majority of ETPs are derived from IL-7Rα-positive cells and give rise exclusively to T cells, the origin of the myeloid cells remains undefined. In this study, we show both in vitro and in vivo that IL-13Rα1(+) ETPs yield myeloid cells with no potential for maturation into T cells, whereas IL-13Rα1(-) ETPs lack myeloid potential. Moreover, transfer of lineage-negative IL-13Rα1(+) bone marrow stem cells into IL-13Rα1-deficient mice reconstituted thymic IL-13Rα1(+) myeloid ETPs. Myeloid cells or macrophages in the thymus are regarded as phagocytic cells whose function is to clear apoptotic debris generated during T cell development. However, the myeloid cells derived from IL-13Rα1(+) ETPs were found to perform Ag-presenting functions. Thus, IL-13Rα1 defines a new class of myeloid restricted ETPs yielding APCs that could contribute to development of T cells and the control of immunity and autoimmunity.


Subject(s)
Antigen-Presenting Cells/cytology , Antigens, Differentiation/analysis , Bone Marrow Cells/classification , Granulocyte-Macrophage Progenitor Cells/cytology , Interleukin-13 Receptor alpha1 Subunit/analysis , Myelopoiesis , Thymus Gland/cytology , Animals , Antigen-Presenting Cells/chemistry , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Bone Marrow Cells/chemistry , Cell Lineage , Cell Movement , Cells, Cultured , Female , Gene Knock-In Techniques , Granulocyte-Macrophage Progenitor Cells/chemistry , Granulocyte-Macrophage Progenitor Cells/drug effects , Granulocyte-Macrophage Progenitor Cells/immunology , Interleukin-13/pharmacology , Interleukin-13 Receptor alpha1 Subunit/deficiency , Interleukin-13 Receptor alpha1 Subunit/genetics , Lymphocytes, Null/cytology , Lymphopoiesis , Male , Mice , Mice, Congenic , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Sequence Deletion , T-Lymphocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...