Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
ACS Med Chem Lett ; 14(8): 1049-1053, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37583821

ABSTRACT

4'-Methyl-4,5'-bithiazoles were previously identified as cystic fibrosis transmembrane regulator (CFTR) correctors, thus being able to correct folding defective mutants of the channel regulating chloride transport through the membrane. Additionally, bithiazole derivative C17 was reported to recover α-sarcoglycan in vitro and in vivo. We report here the synthesis of two new derivatives of C17, in which the two sides of the bithiazole scaffold were modified. The synthesized compounds and the corresponding precursors were tested in myogenic cells to evaluate the expression of α-sarcoglycan. The results highlighted that both substitutions of the bithiazole scaffold are important to achieve the maximum recovery of the α-sarcoglycan mutant. Nonetheless, partial preservation of the activity was observed. Accordingly, this paves the way to further derivatizations/optimization and target fishing studies, which were preliminarily performed in this study as a proof of concept, allowing the investigation of the molecular mechanisms leading to the α-sarcoglycan correction.

2.
Int J Mol Sci ; 24(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37511560

ABSTRACT

We set up an in silico experiment and designed a chimeric compound integrating molecular features from different efficient ROS (Reactive Oxygen Species) scavengers, with the purpose of investigating potential relationships between molecular structure and antioxidant activity. Furthermore, a selenium centre was inserted due to its known capacity to reduce hydroperoxides, acting as a molecular mimic of glutathione peroxidase; finally, since this organoselenide is a precursor of a N-heterocyclic carbene ligand, its Au(I) carbene complex was designed and examined. A validated protocol based on DFT (Density Functional Theory) was employed to investigate the radical scavenging activity of available sites on the organoselenide precursor ((SMD)-M06-2X/6-311+G(d,p)//M06-2X/6-31G(d)), as well as on the organometallic complex ((SMD)-M06-2X/SDD (Au), 6-311+G(d,p)//ZORA-BLYP-D3(BJ)/TZ2P), considering HAT (Hydrogen Atom Transfer) and RAF (Radical Adduct Formation) regarding five different radicals. The results of this case study suggest that the antioxidant potential of chemical motifs should not be considered as an additive property when designing a chimeric compound, but rather that the relevance of a molecular topology is derived from a chemical motif combined with an opportune chemical space of the molecule. Thus, the direct contributions of single functional groups which are generally thought of as antioxidants per se do not guarantee the efficient radical scavenging potential of a molecular species.


Subject(s)
Antioxidants , Selenium , Antioxidants/pharmacology , Antioxidants/chemistry , Selenium/chemistry , Ligands , Reactive Oxygen Species
3.
Front Pharmacol ; 14: 1193282, 2023.
Article in English | MEDLINE | ID: mdl-37426813

ABSTRACT

Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence. Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy -performed in a large and diverse chemolibrary- complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening. Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC50 ≤ 25 µM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC50 = 0.12-20 µM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC50 7-45 µM). Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known "garbage in, garbage out" machine learning principle.

4.
J Chem Inf Model ; 62(24): 6649-6666, 2022 12 26.
Article in English | MEDLINE | ID: mdl-35895094

ABSTRACT

GC-rich sequences are recurring motifs in oncogenes and retroviruses and could be targeted by noncovalent major-groove therapeutic ligands. We considered the palindromic sequence d(G1G2C3G4C5C6)2, and designed several oligopeptide derivatives of the anticancer intercalator mitoxantrone. The stability of their complexes with an 18-mer oligonucleotide encompassing this sequence in its center was validated using polarizable molecular dynamics. We report the most salient structural features of two novel compounds, having a dialkylammonium group as a side chain on both arms. The anthraquinone ring is intercalated in the central d(CpG)2 sequence with its long axis perpendicular to that of the two base pairs. On each strand, this enables each ammonium group to bind in-register to O6/N7 of the two facing G bases upstream. We subsequently designed tris-intercalating derivatives, each dialkylammonium substituted with a connector to an N9-aminoacridine intercalator extending our target range from a six- to a ten-base-pair palindromic sequence, d(C1G2G3G4C5G6C7C8C9G10)2. The structural features of the complex of the most promising derivative are reported. The present design strategy paves the way for designing intercalator-oligopeptide derivatives with even higher selectivity, targeting an increased number of DNA bases, going beyond ten.


Subject(s)
Intercalating Agents , Oligopeptides , Intercalating Agents/pharmacology , Intercalating Agents/chemistry , Mitoxantrone/pharmacology , DNA/chemistry , Molecular Dynamics Simulation , Nucleic Acid Conformation
5.
ACS Omega ; 7(10): 8314-8322, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35309454

ABSTRACT

While the neurochemistry that underpins the behavioral phenotypes of depression is the subject of many studies, oxidative stress caused by the inflammation comorbid with depression has not adequately been addressed. In this study, we described novel antidepressant-antioxidant agents consisting of selenium-modified fluoxetine derivatives to simultaneously target serotonin reuptake (antidepressant action) and oxidative stress. Excitingly, we show that one of these agents (1-F) carries the ability to inhibit serotonin reuptake in vivo in mice. We therefore present a frontier dual strategy that paves the way for the future of antidepressant therapies.

6.
Nat Prod Res ; 36(1): 455-459, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32552183

ABSTRACT

The grape pomace, the main by-product from the winemaking industry, contains many bioactive substances that must be valorized. The aim of this study was to assess the total phenolic content (TPC), phenolics profile by using HPLC and the antioxidant activity (AOA). The results showed a TPC of 38.86 ± 5.22 g gallic acid equivalent (GAE)/kg while an AOA of 247.84 ± 18.65 µmol Trolox equivalent (TE)/g. Epicatechins were the most representative phenolic compound, according to the HPLC analysis. Then, the grape pomace powder (GPP) was tested in the Rancimat equipment as a natural antioxidant for delaying the corn oil oxidation. Results showed statistically significant differences between the corn oil treated with GP and the control, so the GPP could be a promising natural antioxidant to tackle the oxidation vulnerability of corn oil.


Subject(s)
Vitis , Antioxidants , Corn Oil , Fruit/chemistry , Phenols/analysis , Powders
7.
Nat Prod Res ; 36(13): 3469-3473, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33307807

ABSTRACT

In drug discovery, ligand-mediated stabilization of G-quadruplexes is pursued for regulating gene expression and key cellular processes. Electrospray ionization mass spectrometry (ESI-MS) has been optimized for screening putative DNA-binding small molecules of natural and synthetic origin. Several flavonoids were reported to interact with G-quadruplex, and quercetin is among them. In this contribution, the interaction with G-quadruplex DNA of rutin, a glycoside of quercetin extracted from flower buds of Styphnolobium japonicum (L.) Schott, was investigated by means of ESI-MS and molecular docking. While rutin and quercetin showed similar G-quadruplex binding affinity values, rutin was characterized by enhanced selectivity for G-quadruplex over double stranded DNA. Moreover, collision-induced dissociation (CID) assays demonstrated that rutin stabilizes the G-quadruplex arrangement more efficiently, and molecular docking predicted stacking as the preferential interaction pattern.


Subject(s)
G-Quadruplexes , DNA/chemistry , Flavonoids , Glycosides , Molecular Docking Simulation , Quercetin , Rutin , Spectrometry, Mass, Electrospray Ionization/methods
8.
J Biomol Struct Dyn ; 40(3): 1101-1108, 2022 02.
Article in English | MEDLINE | ID: mdl-32948103

ABSTRACT

The spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) caused a worldwide outbreak of coronavirus disease 19 (COVID-19), which rapidly evolved as a global concern. The efforts of the scientific community are pointed towards the identification of promptly available therapeutic options. RNA-dependent RNA polymerase (RdRp) is a promising target for developing small molecules to contrast SARS-CoV-2 replication. Modern computational tools can boost identification and repurposing of known drugs targeting RdRp. We here report the results regarding the screening of a database containing more than 8800 molecules, including approved, experimental, nutraceutical, illicit, withdrawn and investigational compounds. The molecules were docked against the cryo-electron microscopy structure of SARS-CoV-2 RdRp, optimized by means of molecular dynamics (MD) simulations. The adopted three-stage ensemble docking study underline that compounds formerly developed as kinase inhibitors may interact with RdRp.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Drug Repositioning , Antiviral Agents/pharmacology , Cryoelectron Microscopy , Humans , Molecular Docking Simulation , RNA, Viral , RNA-Dependent RNA Polymerase , SARS-CoV-2
9.
Nat Prod Res ; 36(1): 405-410, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32419493

ABSTRACT

Natural and synthetic small molecules targeting G-quadruplex are currently being studied. These peculiar DNA arrangements arise in guanine-rich sequences located in telomeres, oncogene promoters and in several viruses. Two semi-synthetic derivatives of osajin, a natural isoflavone from Maclura pomifera, were prepared and screened for their binding affinity towards G-quadruplex and double stranded DNA (dsDNA) using electrospray mass spectrometry (ESI-MS). Although an overall decrease in affinity for DNA was observed, one of the derivatives showed improved selectivity for G-quadruplex over dsDNA, retaining structure stabilization properties. Binding motif was studied by collision-induced dissociation (CID) assays and molecular docking, that suggested stacking as the preferential interaction pattern. Moreover, the compound selectively induced DNA damage on the G-quadruplex sequence upon UV irradiation, due to the presence of the photoreactive aryl tosylate group.


Subject(s)
G-Quadruplexes , Isoflavones , DNA , Molecular Docking Simulation , Spectrometry, Mass, Electrospray Ionization
10.
Molecules ; 26(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34834152

ABSTRACT

Medicinal chemistry is facing new challenges in approaching precision medicine. Several powerful new tools or improvements of already used tools are now available to medicinal chemists to help in the process of drug discovery, from a hit molecule to a clinically used drug. Among the new tools, the possibility of considering folding intermediates or the catalytic process of a protein as a target for discovering new hits has emerged. In addition, machine learning is a new valuable approach helping medicinal chemists to discover new hits. Other abilities, ranging from the better understanding of the time evolution of biochemical processes to the comprehension of the biological meaning of the data originated from genetic analyses, are on their way to progress further in the drug discovery field toward improved patient care. In this sense, the new approaches to the delivery of drugs targeted to the central nervous system, together with the advancements in understanding the metabolic pathways for a growing number of drugs and relating them to the genetic characteristics of patients, constitute important progress in the field.


Subject(s)
Chemistry, Pharmaceutical , Drug Design , Drug Discovery , Machine Learning , Precision Medicine , Humans
SELECTION OF CITATIONS
SEARCH DETAIL