Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Monit Assess ; 194(9): 629, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35918614

ABSTRACT

Bacteria in a hospital environment potentially cause hospital-acquired infections (HAIs), particularly in immunocompromised individuals. Treatments of HAIs with antibiotics, however, are ineffective due to the emergence of antibiotic-resistant bacteria (ARB). This study aims to identify airborne bacteria in a tertiary hospital in Malaysia and screen for their resistance to commonly used broad-spectrum antibiotics. Airborne bacteria were sampled using active sampling at the respiratory ward (RW), physician clinic (PC) and emergency department (ED). Physical parameters of the areas were recorded, following the Industry Code of Practice on Indoor Air Quality 2010 (ICOP IAQ 2010). Bacterial identification was based on morphological and biochemical tests. Antibiotic resistance screening was carried out using the Kirby-Bauer disk diffusion method. Results showed that the highest bacterial population was found in the highest density occupancy area, PC (1024 ± 54 CFU/m3), and exceeded the acceptable limit. Micrococcus spp., Staphylococcus aureus, α- and ß-Streptococcus spp., Bacillus spp. and Clostridium spp. colonies were identified at the sampling locations. The antibiotic resistance screening showed a vast percentage of resistance amongst the bacterial colonies, with resistance to ampicillin observed as the highest percentage (Micrococcus spp.: 95.2%, S. aureus: 100%, Streptococcus spp.: 75%, Bacillus spp.: 100% and Clostridium spp.: 100%). This study provides awareness to healthcare practitioners and the public on the status of the emergence of ARB in a hospital environment. Early detection of bacterial populations and good management of hospital environments are important prevention measures for HAI.


Subject(s)
Cross Infection , Staphylococcus aureus , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria , Drug Resistance, Bacterial , Drug Resistance, Microbial , Environmental Monitoring , Hospitals , Humans
2.
J Environ Biol ; 36(6): 1255-61, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26688958

ABSTRACT

Microtox is based on the inhibition of luminescence of the bacterium Vibrio fischeri by the toxicants. This technique has been accepted by the USEPA (United States Environmental Protection Agency) as a biomonitoring tool for remediation of toxicants such as hydrocarbon sludge. In the present study, a luminescent bacterium was isolated from yellow striped scad (Selaroides leptolepis) and was tentatively identified as Vibrio sp. isolate MZ. This aerobic isolate showed high luminescence activity in a broad range of temperature from 25 to 35 °C. In addition, optimal conditions for high bioluminescence activity in range of pH 7.5 to 8.5 and 10 gl(-1) of sodium chloride, 10 gl(-1) of peptone and 10 gl(-1) of sucrose as carbon source. Bench scale biodegradation 1% sludge (w/v) was set up and degradation was determined using gas chromatography with flame ionised detector (GC-FID). In this study, Rhodococcus sp. strain AQ5NOL2 was used to degrade the sludge. Based on the preliminary results obtained, Vibrio sp. isolate MZwas able to monitor the biodegradation of sludge. Therefore, Vibrio sp. isolate MZ has the potential to be used as a biomonitoring agent for biomonitoring of sludge biodegradation particularly in the tropical ranged environment.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Sewage , Vibrio/physiology , Animals , Bacteria/classification , Bioreactors , Fishes/microbiology , Luminescence , Phylogeny , Vibrio/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...