Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 4(1): 1315, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799676

ABSTRACT

Telomere maintenance and tumor cell differentiation have been separately implicated in neuroblastoma malignancy. Their mechanistic connection is unclear. We analyzed neuroblastoma cell lines and morphologic subclones representing the adrenergic (ADRN) and mesenchymal (MES) differentiation states and uncovered sharp differences in their telomere protein and telomerase activity levels. Pharmacologic conversion of ADRN into MES cells elicited consistent and robust changes in the expression of telomere-related proteins. Conversely, stringent down-regulation of telomerase activity triggers the differentiation of ADRN into MES cells, which was reversible upon telomerase up-regulation. Interestingly, the MES differentiation state is associated with elevated levels of innate immunity factors, including key components of the DNA-sensing pathway. Accordingly, MES but not ADRN cells can mount a robust response to viral infections in vitro. A gene expression signature based on telomere and cell lineage-related factors can cluster neuroblastoma tumor samples into predominantly ADRN or MES-like groups, with distinct clinical outcomes. Our findings establish a strong mechanistic connection between telomere and differentiation and suggest that manipulating telomeres may suppress malignancy not only by limiting the tumor growth potential but also by inducing tumor cell differentiation and altering its immunogenicity.


Subject(s)
Cell Differentiation , Neuroblastoma/enzymology , Telomerase/metabolism , Cell Line, Tumor , Humans , Mesenchymal Stem Cells/enzymology
2.
Commun Biol ; 3(1): 777, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33328546

ABSTRACT

Duplex telomere binding proteins exhibit considerable structural and functional diversity in fungi. Herein we interrogate the activities and functions of two Myb-containing, duplex telomere repeat-binding factors in Ustilago maydis, a basidiomycete that is evolutionarily distant from the standard fungi. These two telomere-binding proteins, UmTay1 and UmTrf2, despite having distinct domain structures, exhibit comparable affinities and sequence specificity for the canonical telomere repeats. UmTay1 specializes in promoting telomere replication and an ALT-like pathway, most likely by modulating the helicase activity of Blm. UmTrf2, in contrast, is critical for telomere protection; transcriptional repression of Umtrf2 leads to severe growth defects and profound telomere aberrations. Comparative analysis of UmTay1 homologs in different phyla reveals broad functional diversity for this protein family and provides a case study for how DNA-binding proteins can acquire and lose functions at various chromosomal locations. Our findings also point to stimulatory effect of telomere protein on ALT in Ustilago maydis that may be conserved in other systems.


Subject(s)
Basidiomycota/genetics , Basidiomycota/metabolism , DNA Replication , Recombination, Genetic , Telomere-Binding Proteins/metabolism , Telomere/genetics , Telomere/metabolism , Binding Sites , Evolution, Molecular , Humans , Models, Molecular , Protein Conformation , Proto-Oncogene Proteins c-myb/genetics , Repetitive Sequences, Nucleic Acid , Telomere-Binding Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...