Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37762354

ABSTRACT

Tuberculosis remains the leading cause of death from a single pathogen. On the other hand, antimicrobial resistance (AMR) makes it increasingly difficult to deal with this disease. We present the hyperbolic embedding of the Mycobacterium tuberculosis protein interaction network (mtbPIN) of resistant strain (MTB XDR1219) to determine the biological relevance of its latent geometry. In this hypermap, proteins with similar interacting partners occupy close positions. An analysis of the hypermap of available drug targets (DTs) and their direct and intermediate interactors was used to identify potentially useful drug combinations and drug targets. We identify rpsA and rpsL as close DTs targeted by different drugs (pyrazinamide and aminoglycosides, respectively) and propose that the combination of these drugs could have a synergistic effect. We also used the hypermap to explain the effects of drugs that affect multiple DTs, for example, forcing the bacteria to deal with multiple stresses like ethambutol, which affects the synthesis of both arabinogalactan and lipoarabinomannan. Our strategy uncovers novel potential DTs, such as dprE1 and dnaK proteins, which interact with two close DT pairs: arabinosyltransferases (embC and embB), Ser/Thr protein kinase (pknB) and RNA polymerase (rpoB), respectively. Our approach provides mechanistic explanations for existing drugs and suggests new DTs. This strategy can also be applied to the study of other resistant strains.

2.
Comput Biol Med ; 151(Pt A): 106284, 2022 12.
Article in English | MEDLINE | ID: mdl-36370580

ABSTRACT

The worldwide pandemic of coronavirus disease 2019 (COVID-19) along with the various newly discovered major SARS-CoV-2 variants, including B.1.1.7, B.1.351, and B.1.1.28, constitute the Variant of Concerns (VOC). It's difficult to keep these variants from spreading over the planet. As a result of these VOCs, the fifth wave has already begun in several countries. The rapid spread of VOCs is posing a serious threat to human civilization. There is currently no specific medicine available for the treatment of COVID-19. Here, we present the findings of methods that used a combination of structure-assisted drug design, virtual screening, and high-throughput screening to swiftly generate lead compounds against Mpro protein of SARs-CoV-2. Therapeutics, in addition to vaccinations, are an essential element of the healthcare response to COVID-19's persistent threat. In the current study, we designed the efficient compounds that may combat all emerging variants of SARs-CoV-2 by targeting the common Mpro protein. The present study was aimed to discover new compounds that may be proposed as new therapeutic agents to treat COVID-19 infection without any adverse effects. For this purpose, a computational-based virtual screening of 352 in-house synthesized compounds library was performed through molecular docking and Molecular Dynamics (MD) simulation approach. As a result, four novel potent compounds were successfully shortlisted by implementing certain pharmacological, physiological, and ADMET criteria i.e., compounds 3, 4, 21, and 22. Furthermore, MD simulations were performed to evaluate the stability and dynamic behavior of these compounds with Mpro complex for about 30 ns. Eventually, compound 22 was found to be highly potent against Mpro protein and was further evaluated by applying 100 ns simulations. Our findings showed that these shortlisted compounds may have potency to treat the COVID-19 infection for which further experimental validation is proposed as part of a follow-up investigation.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Molecular Docking Simulation , Pandemics , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology
3.
Pak J Pharm Sci ; 34(4): 1359-1367, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34799308

ABSTRACT

Campylobacter jejuni (CJJ) is a source of bacterial foodborne diarrhea globally. Mostly found prevalent in children in the developing countries that may lead to mortality. The upsurge in antimicrobial resistance is causing hindrance in the treatment, as highlighted by CDC and WHO. The study hypothesized the application of subtractive genomics approach coupled with metabolic pathway to reveal unidentified essential proteins that could serve as potential drug target (s). The approach was employed to model the druggable proteome of C. jejuni resistant strain 81-176. We obtained 728/1744 non-homologous essential proteins by performing sequence similarity search against host proteome and DEG server, respectively. The KAAS annotated metabolic pathway information; PSORTb predicted their sub cellular localization and SVMPro functional annotated 104 hypothetical proteins while the Drug Bank for the druggability analysis. We found 04/104 protein druggable viz. synaptic vesicular amine transporter, Uracil-DNA glycosylase, Laccase domain protein YfiH, and Phosphoenolpyruvate protein phosphor transferase. The study has revealed a formerly uncharacterized pool of C. jejuni proteins that can play a significant role in controlling CJJ infection and presented previously uncharacterized four proteins as potential drug targets. These potential drug targets can further be explored employing structure-based and other biochemical methods by the scientific community.


Subject(s)
Bacterial Proteins/genetics , Campylobacter jejuni/genetics , Proteome/genetics , Computer Simulation , Genes, Bacterial/genetics , Genomics/methods , Metabolic Networks and Pathways/genetics , Subcellular Fractions
4.
Mol Biotechnol ; 63(12): 1252-1267, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34382159

ABSTRACT

The reconstruction and analysis of the protein-protein interaction (PPI) network is a powerful approach to understand the complex biological and molecular functions in normal and disease states of the cell. The interactome of most organisms is largely unidentified except some model organisms. The current study focused on the construction of PPI network for the human pathogen Mycobacterium tuberculosis (MTB)-resistant strain XDR1219 using computational methods. In this work, a bioinformatics approach was employed to reveal potential drug targets. The pipeline adopted the combination of an extensive integrated network analysis that led to identify 22 key proteins involved in drug resistance, resistant metabolic pathways, virulence, pathogenesis and persistency of the infection. The MTB XDR1219 interactome consists of 11,383 non-redundant PPIs among 1499 proteins covering 38% of the entire MTB XDR1219 proteome. The overall quality of the network was assessed and topological parameters of the PPI were calculated. The predicted interactions were functionally annotated and their relevance was assessed with the functional similarity. The study attempts to present the interactome of previously unidentified MTB XDR1219 and revealed potential drug targets that can be further explored by scientific community.


Subject(s)
Drug Resistance, Bacterial , Mycobacterium tuberculosis/metabolism , Protein Interaction Maps , Proteomics/methods , Bacterial Proteins/drug effects , Bacterial Proteins/metabolism , Computational Biology/methods , Drug Discovery , Drug Resistance, Bacterial/drug effects , Molecular Targeted Therapy , Mycobacterium tuberculosis/drug effects , Protein Interaction Maps/drug effects
5.
Comput Biol Chem ; 79: 91-102, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30743161

ABSTRACT

Tuberculosis (TB) is a major global health challenge. It has been afflicting human for thousands of years and is still severely affecting a huge population. The etiological agent of the disease is Mycobacterium tuberculosis (MTB) that survives in the human host in latent, dormant, and non-replicative state by evading the immune system. It is one of the leading causes of infection related death worldwide. The situation is exacerbated by the massive increase in the resistant strains such as multi-drug resistant TB (MDR-TB) and extensive drug-resistant TB (XDR-TB). The resistance is as severe that it resulted in failure of the current chemotherapy regimens (i.e. anti-tubercular drugs). It is therefore imperative to discover the new anti-tuberculosis drug targets and their potential inhibitors. Current study has made the use of in silico approaches to perform the comparative metabolic pathway analysis of the MTBXDR1219 with the host i.e. H. sapiens. We identified several metabolic pathways which are unique to pathogen only. By performing subtractive genomic analysis 05 proteins as potential drug target are retrieved. This study suggested that the identified proteins are essential for the bacterial survival and non-homolog to the host proteins. Furthermore, we selected glucosyl-3-phosoglycerate phosphatase (GpgP, EC 5.4.2.1) out of the 05 proteins for molecular docking analysis and virtual screening. The protein is involved in the biosynthesis of methylglucose lipopolysaccharides (MGLPs) which regulate the biosynthesis of mycolic acid. Mycolic acid is the building block of the unique cell wall of the MTB which is responsible for the resistance and pathogenicity. A relatively larger library consisting of 10,431 compounds was screened using AutoDock Vina to predict the binding modes and to rank the potential inhibitors. No potent inhibitor against MTB GpgP has been reported yet, therefore ranking of compounds is performed by making a comparison with the substrate i.e. glucosyl-3-phosphoglycerate. The obtained results provide the understanding of underlying mechanism of interactions of ligands with protein. Follow up study will include the study of the Protein-Protein Interactions (PPIs), and to propose the potential inhibitors against them.


Subject(s)
Antitubercular Agents/pharmacology , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Tuberculosis, Multidrug-Resistant/drug therapy , Antitubercular Agents/chemistry , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Mycobacterium tuberculosis/metabolism , Phosphoric Monoester Hydrolases/metabolism , Tuberculosis, Multidrug-Resistant/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...