Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 1806, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33469047

ABSTRACT

This study investigates the removal of Pb(II) using polymer matrix membranes, cellulose acetate/vinyl triethoxysilane modified graphene oxide and gum Arabic (GuA) membranes. These complexation-NF membranes were successfully synthesized via dissolution casting method for better transport phenomenon. The varied concentrations of GuA were induced in the polymer matrix membrane. The prepared membranes M-GuA2-M-GuA10 were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscope and bio-fouling studies. Thermal stability of the membranes was determined by thermogravimetric analysis under nitrogen atmosphere. Dead end nanofiltration was carried out to study the perm- selectivity of all the membranes under varied pressure and concentration of Pb(NO3)2. The complexation-NF membrane performances were significantly improved after the addition of GuA in the polymer matrix membrane system. M-GuA8 membrane showed optimum result of permeation flux 8.6 l m-2 h-1. Rejection of Pb(II) ions was observed to be around 97.6% at pH 9 for all the membranes due to electrostatic interaction between CA and Gum Arabic. Moreover, with the passage of time, the rate of adsorption was also increased up to 15.7 mg g-1 until steady state was attained. Gum Arabic modified CA membranes can open up new possibilities in enhancing the permeability, hydrophilicity and anti-fouling properties.

2.
Sci Rep ; 10(1): 17267, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33057183

ABSTRACT

This paper reports the oxidation of Remazol black B dye by employing iron ions catalyst based gas diffusion cathodes, (GDCs). A GDC was synthesized by using a layer of carbon black and iron ions catalyst for oxygen reduction to hydrogen peroxide. The results demonstrated around 97% decolorization of Remazol black-B dye for 50 min by iron ions catalyst based GDC. The degradation study was performed under electrogenerated hydrogen peroxide at a constant voltage of - 0.6 V vs Hg/HgSO4 in which the rate of degradation was correlated with hydrogen peroxide production. Overall, the GDC's found to be effective method to degrade the dyes via electro-Fenton.

SELECTION OF CITATIONS
SEARCH DETAIL