Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 517, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017593

ABSTRACT

A total of 227 Plasmodium falciparum isolates from Jazan region, southwestern Saudi Arabia were amplified for the P. falciparum multi-drug resistance 1 (pfmdr1) gene to detect point mutations 11 years after the introduction of artemisinin-based combination therapy (ACT) in Saudi Arabia. The pfmdr1 86Y mutation was found in 11.5% (26/227) of the isolates while the N86 wild allele was detected in 88.5%. Moreover, 184F point mutations dominated (86.3%) the instances of pfmdr1 polymorphism while no mutation was observed at codons 1034, 1042 and 1246. Three pfmdr1 haplotypes were identified, NFSND (74.9%), NYSND (13.7%) and YFSND (11.4%). Associations of the prevalence of 86Y mutation and YFSND haplotype with participants' nationality, residency and parasitaemia level were found to be significant (P < 0.05). The findings revealed significant decline in the prevalence of the pfmdr1 86Y mutation in P. falciparum isolates from Jazan region over a decade after the implementation of ACT treatment. Moreover, the high prevalence of the NFSND haplotype might be indicative of the potential emergence of CQ-sensitive but artemether-lumefantrine-resistant P. falciparum strains since the adoption of ACT. Therefore, continuous monitoring of the molecular markers of antimalarial drug resistance in Jazan region is highly recommended.


Subject(s)
Plasmodium falciparum
2.
Parasitol Res ; 120(11): 3771-3781, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34561749

ABSTRACT

This study investigated the polymorphism in the P. falciparum chloroquine resistance transporter (pfcrt) gene 11 years after chloroquine (CQ) cessation in Jazan region, southwestern Saudi Arabia. Two hundred and thirty-five P. falciparum isolates were amplified to detect mutations in the pfcrt gene. The pfcrt 76 T molecular marker for CQ resistance was detected in 66.4% (156/235) of the isolates, while the K76 CQ-sensitive wild type was detected in 33.6%. The pfcrt 74I and pfcrt 75E point mutations were each found to be present in 56.2% of isolates, while only four isolates (1.7%) were found to carry the pfcrt 72S mutation. Moreover, four pfcrt haplotypes were identified as follows: the CVIET triple-allele (56.2%), SVMET double-allele (1.7%) and CVMNT single-allele (8.5%) mutant haplotypes and the CVMNK wild haplotype (33.6%). The analysis also revealed significant associations between the prevalence of mutant pfcrt alleles and haplotypes and the age group, governorate and nationality of the patients as well as the parasitaemia level (p < 0.05). The findings provide evidence of the potential re-emergence of CQ-susceptible P. falciparum strains in Jazan region over a decade after CQ discontinuation, with about one third of the isolates analysed carrying the pfcrt K76 CQ-sensitive wild allele and the CVMNK ancestral wild haplotype. Although the reintroduction of CQ cannot be recommended at present in Saudi Arabia, these findings support the rationale for a potential future role for CQ in malaria treatment. Therefore, continuous molecular and in vitro monitoring mutations of pfcrt polymorphism in Jazan region is highly recommended.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Parasites , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Chloroquine/pharmacology , Chloroquine/therapeutic use , Drug Resistance/genetics , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Saudi Arabia
3.
Malar J ; 20(1): 315, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34256757

ABSTRACT

BACKGROUND: Saudi Arabia and Yemen are the only two countries in the Arabian Peninsula that are yet to achieve malaria elimination. Over the past two decades, the malaria control programme in Saudi Arabia has successfully reduced the annual number of malaria cases, with the lowest incidence rate across the country reported in 2014. This study aims to investigate the distribution of residual malaria in Jazan region and to identify potential climatic drivers of autochthonous malaria cases in the region. METHODS: A cross-sectional study was carried out from 1 April 2018 to 31 January 2019 in Jazan region, southwestern Saudi Arabia, which targeted febrile individuals attending hospitals and primary healthcare centres. Participants' demographic data were collected, including age, gender, nationality, and residence. Moreover, association of climatic variables with the monthly autochthonous malaria cases reported during the period of 2010-2017 was retrospectively analysed. RESULTS: A total of 1124 febrile subjects were found to be positive for malaria during the study period. Among them, 94.3 and 5.7% were infected with Plasmodium falciparum and Plasmodium vivax, respectively. In general, subjects aged 18-30 years and those aged over 50 years had the highest (42.7%) and lowest (5.9%) percentages of malaria cases. Similarly, the percentage of malaria-positive cases was higher among males than females (86.2 vs 13.8%), among non-Saudi compared to Saudi subjects (70.6 vs 29.4%), and among patients residing in rural rather than in urban areas (89.8 vs 10.2%). A total of 407 autochthonous malaria cases were reported in Jazan region between 2010 and 2017. Results of zero-inflated negative binomial regression analysis showed that monthly average temperature and relative humidity were the significant climatic determinants of autochthonous malaria in the region. CONCLUSION: Malaria remains a public health problem in most governorates of Jazan region. The identification and monitoring of malaria transmission hotspots and predictors would enable control efforts to be intensified and focused on specific areas and therefore expedite the elimination of residual malaria from the whole region.


Subject(s)
Climate , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Weather , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Endemic Diseases/statistics & numerical data , Female , Humans , Incidence , Infant , Infant, Newborn , Male , Middle Aged , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Saudi Arabia/epidemiology , Young Adult
4.
J Oral Microbiol ; 13(1): 1936434, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34211637

ABSTRACT

Background: A few recent studies have characterized the salivary microbiome in association with Autism Spectrum Disorder (ASD). Here, we sought to assess if there is an association between the tongue microbiome and ASD. Methods: Tongue scrapping samples were obtained from 25 children with ASD and 38 neurotypical controls. The samples were sequenced for the 16S rRNA gene (V1-V3) and the resultant high-quality reads were assigned to the species-level using our previously described BLASTn-based algorithm. Downstream analyses of microbial profiles were conducted using QIIME, LEfSe, and R. Results: Independent of grouping, Prevotella, Streptococcus, Leptotrichia, Veillonella, Haemophilus and Rothia accounted for > 60% of the average microbiome. Haemophilus parainfluenzae, Rothia mucilaginosa, Prevotella melaninogenica and Neisseria flavescens/subflava were the most abundant species. Species richness and diversity did not significantly differ between the study groups. Thirteen species and three genera were differentially abundant between the two groups, e.g. enrichment of Actinomyces odontolyticus and Actinomyces lingnae and depletion of Campylobacter concisus and Streptococcus vestibularis in the ASD group. However, none of them withstood adjustment for multiple comparisons. Conclusion: The tongue microbiome of children with ASD was not significantly different from that of healthy control children, which is largely consistent with results from the literature.

5.
Malar J ; 19(1): 446, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33267841

ABSTRACT

BACKGROUND: Despite significant progress in eliminating malaria from the Kingdom of Saudi Arabia, the disease is still endemic in the southwestern region of the country. Artesunate plus sulfadoxine-pyrimethamine (AS + SP) has been used in Saudi Arabia since 2007 as a first-line treatment for uncomplicated Plasmodium falciparum malaria. This study aimed to investigate the prevalence of mutations associated with resistance to artemisinin and sulfadoxine-pyrimethamine (SP) resistance in P. falciparum parasites circulating in Jazan region, southwestern Saudi Arabia. METHODS: A total of 151 P. falciparum isolates were collected between April 2018 and March 2019 from 12 of the governorates in Jazan region. Genomic DNA was extracted from dried blood spots and amplified using nested PCR. Polymorphisms in the propeller domain of the P. falciparum k13 (pfkelch13) gene and point mutations in the P. falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes were identified by sequencing. RESULTS: No mutations in the pfkelch13 propeller domain were found in any of the 151 isolates. However, point mutations in the pfdhfr and pfdhps genes were detected in 90.7% (137/151) of the isolates. The pfdhfr double mutations N51I + S108N (i.e. ACICNI haplotype) and triple mutations N51I + C59R + S108N (i.e. ACIRNI haplotype) were detected in 47% and 37.8% of the isolates, respectively. Moreover, the pfdhps single mutation at codon A437G and double mutations A437G + K540E (i.e. SGEAAI haplotype) were observed in 4.6% and 51.7% of the isolates, respectively. Interestingly, 23.8%, 25.1 and 12.6% of the isolates had quintuple, quadruple and triple mutated combined pfdhfr-pfdhps genotypes, respectively. Furthermore, significant associations were found between the prevalence of mutant haplotypes and the age, gender and nationality of the patients (P < 0.05). CONCLUSION: This study revealed a high prevalence of point mutations in the pfdhfr and pfdhps genes of P. falciparum isolates from Jazan region, with quintuple and quadruple mutant pfdhfr-pfdhps genotypes reported for the first time in Saudi Arabia and the Arabian Peninsula. Despite the absence of the pfkelch13 mutation in the isolates examined, the pfdhfr and pfdhps mutations undermine the efficacy of SP partner drug, thereby threatening the main falciparum malaria treatment policy in Saudi Arabia, i.e. the use of AS + SP. Therefore, the continuous molecular and in-vivo monitoring of ACT efficacy in Jazan region is highly recommended.


Subject(s)
Drug Resistance/genetics , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins/genetics , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Adolescent , Adult , Antimalarials/pharmacology , Cross-Sectional Studies , Dihydropteroate Synthase/genetics , Drug Combinations , Female , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Mutation/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Prevalence , Saudi Arabia , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...