Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 403: 130868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782193

ABSTRACT

Prior research has emphasized the potential of microalgae in biodiesel production, driven by their ability to replace fossil fuels. However, the significant costs associated with microalgae cultivation present a major obstacle to scaling up production. This study aims to develop an eco-friendly microalgae cultivation system by integrating carbon dioxide from flue gas emissions with an affordable photobioreactor, providing a sustainable biomass production. The research evaluates the growth performance of Chlorella sorokiniana and Chlorella vulgaris across this integrated system for biomass and lipid production. Results indicate substantial biomass yields of 1.97 and 1.84 g/L, with lipid contents of 35 % and 41 % for C. sorokiniana and C. vulgaris, respectively. The macrobubble photobioreactor demonstrates high potential for microalgae biomass and lipid production, yielding quality fatty acid methyl esters such as palmitic, linoleic and stearic. This study presents an environmentally friendly system for efficient microalgae cultivation, generating lipid-rich biomass suitable for biodiesel production.


Subject(s)
Biofuels , Biomass , Chlorella vulgaris , Chlorella , Lipids , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Chlorella/growth & development , Chlorella/metabolism , Lipids/biosynthesis , Photobioreactors , Fatty Acids/metabolism , Microalgae/growth & development , Microalgae/metabolism
2.
Front Bioeng Biotechnol ; 10: 775676, 2022.
Article in English | MEDLINE | ID: mdl-35402398

ABSTRACT

Application of anaerobic digestion (AD) has become common in treating palm oil mill effluent in Malaysia; however, employing AD in treating the organic fraction of municipal solid waste (OFMSW), especially food waste, is still scarce. This study aims to characterize the commercial Malaysian food waste (CMFW) and determine its potential as sustainable bioenergy feedstock through biogas production. The sample was digested via the biomethane potential (BMP) test with the variation of organic loading rates (OLRs), ranging from 0.38 to 3.83 gCOD/L. day, under mesophilic conditions. The digestion process was further evaluated in continuous operation using a 6-L continuous stirred-tank reactor (CSTR). The kinetic properties of the process were also determined. It was found that the CMFW had a significant amount of chemical oxygen demand of 230 g/L and an acidic pH of 4.5 with the carbon to nitrogen (C/N) ratio at 121:1. A maximum methane composition of 81% was obtained at 1.92 gCOD/L in the BMP test with specific methane production (SMP) at 0.952 L. CH4/L.COD fed. The biogas production was well-fitted with the modified Gompertz model with R 2 at 0.9983 and the maximum biogas potential production rate at Rm 0.1573 L/day, whereas in the CSTR operation, a maximum methane composition of 85% was produced at OLR 6 gCOD/L. day with the SMP of 1.13 L. CH4/L.COD fed. The CSTR system was in high stability as the pH was maintained in a range of 6.6-6.7, with an alkalinity ratio of 0.28. This study indicates the CMFW is a sustainable feedstock for biogas production in Malaysia. Toward a circular economy approach, the authorities shall introduce commercial scale CMFW AD as part of managing municipal solid waste issues in Malaysia.

3.
J Biol Res (Thessalon) ; 21(1): 6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25984489

ABSTRACT

Despite being more popular for biofuel, microalgae have gained a lot of attention as a source of biomolecules and biomass for feed purposes. Algae farming can be established using land as well as sea and strategies can be designed in order to gain the products of specific interest in the optimal way. A general overview of the contributions of Algae to meet the requirements of nutrients in animal/aquaculture feed is presented in this study. In addition to its applications in animal/aquaculture feed, algae can produce a number of biomolecules including astaxanthin, lutein, beta-carotene, chlorophyll, phycobiliprotein, Polyunsaturated Fatty Acids (PUFAs), beta-1,3-glucan, and pharmaceutical and nutraceutical compounds which have been reviewed with respect to their commercial importance and current status. The review is further extended to highlight the adequate utilization of value added products in the feeds for livestock, poultry and aquaculture (with emphasis in shrimp farming).

SELECTION OF CITATIONS
SEARCH DETAIL
...