Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Br J Clin Pharmacol ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690606

ABSTRACT

AIMS: Corticosteroids are the treatment of choice for many inflammatory diseases but often lead to adverse effects, including hyperglycaemia. This study investigated the mechanisms driving differential effects on glucose control for AZD9567, an oral nonsteroidal selective glucocorticoid receptor modulator vs. prednisolone in 46 patients with type 2 diabetes mellitus. METHODS: In this randomized, double-blind, 2-way cross-over study (NCT04556760), participants received either AZD9567 72 mg and prednisolone 40 mg daily (cohort 1); AZD9567 40 mg and prednisolone 20 mg daily (cohort 2); or placebo and prednisolone 5 mg daily (cohort 3). Treatment duration was 3 days with a 3-week washout between treatment periods. Glycaemic control was assessed after a standardized meal and with continuous glucose monitoring. RESULTS: A significant difference between AZD9567 and prednisolone in favour of AZD9567 was observed for the change from baseline to Day 4 glucose excursions postmeal in cohort 1 (glucose area under the curve from 0 to 4 h -4.54%; 95% confidence interval [CI]: -8.88, -0.01; P = .049), but not in cohort 2 (-5.77%; 95% CI: -20.92, 12.29; P = .435). In cohort 1, significant differences between AZD9567 and prednisolone were also seen for the change from baseline to day 4 in insulin and glucagon secretion postmeal (P < .001 and P = .005, respectively) and change from baseline to Day 4 in GLP-1 response (P = .022). Significant differences between AZD9567 and prednisolone for 24-h glucose control were observed for both cohort 1 (-1.507 mmol/L; 95% CI: -2.0820, -0.9314; P < .001) and cohort 2 (-1.110 mmol/L; 95% CI -1.7257, -0.4941; P < .001). CONCLUSION: AZD9567 significantly reduced treatment-induced hyperglycaemia compared with prednisolone.

2.
J Phys Chem Lett ; 15(18): 4913-4919, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38684076

ABSTRACT

Raman optical activity (ROA) spectroscopy exhibits significant potential in the study of (bio)molecules as it encodes information on their molecular structure, chirality, and conformations. Furthermore, the method reveals details on excited electronic states when applied under resonance conditions. Here, we present a combined study of the far from resonance (FFR)-ROA and resonance ROA (RROA) of a single relatively small molecular system. Notably, this study is the first to employ the density functional theory (DFT) analysis of both FFR-ROA and RROA spectra. This is illustrated for cobalamin derivatives using near-infrared and visible light excitation. Although the commonly observed monosignate RROA spectra lose additional information visible in bisignate nonresonance ROA spectra, the RROA technique acts as a complement to nonresonance ROA spectroscopy. In particular, the combination of these methods integrated with DFT calculations can reveal a complete spectral picture of the structural and conformational differences between tested compounds.

3.
Angew Chem Int Ed Engl ; 63(21): e202402449, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38517385

ABSTRACT

Carotenoids tend to form supramolecular aggregates via non-covalent interactions where the chirality of individual molecules is amplified to the macroscopic level. We show that this can also be achieved for non-chiral carotenoid monomers interacting with polysaccharides. The chirality induction in canthaxanthin (CAX), caused by heparin (HP) and hyaluronic acid (HA), was monitored by chiroptical spectroscopy. Electronic circular dichroism (ECD) and Raman optical activity (ROA) spectra indicated the presence of multiple carotenoid formations, such as H- and J-type aggregates. This is consistent with molecular dynamics (MD) and density functional theory (DFT) simulations of the supramolecular structures and their spectroscopic response.

4.
Small ; 20(26): e2306707, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38247201

ABSTRACT

In living organisms, carotenoids are incorporated in biomembranes, remarkably modulating their mechanical characteristics, fluidity, and permeability. Significant resonance enhancement of Raman optical activity (ROA) signals of carotenoid chiral aggregates makes resonance ROA (RROA), a highly selective tool to study exclusively carotenoid assemblies in model membranes. Hence, RROA is combined with electronic circular dichroism (ECD), dynamic light scattering (DLS), molecular dynamics, and quantum-chemical calculations to shed new light on the carotenoid aggregation in dipalmitoylphosphatidylcholine (DPPC) liposomes. Using representative members of the carotenoid family: apolar α-carotene and more polar fucoxanthin and zeaxanthin, the authors demonstrate that the stability of carotenoid aggregates is directly linked with their orientation in membranes and the monomer structures inside the assemblies. In particular, polyene chain distortion of α-carotene molecules is an important feature of J-aggregates that show increased orientational freedom and stability inside liposomes compared to H-assemblies of more polar xanthophylls. In light of these results, RROA emerges as a new tool to study active compounds and drugs embedded in membranes.


Subject(s)
Carotenoids , Liposomes , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Carotenoids/chemistry , Liposomes/chemistry , Molecular Dynamics Simulation , Circular Dichroism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Xanthophylls/chemistry
5.
Sci Rep ; 13(1): 528, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631591

ABSTRACT

The article presents the effect of pre-sowing Lavatera thuringiaca L. seeds stimulation with He-Ne laser light on the chemical composition (P, S, K, Ca, Mn, Fe, Ni, Cu and Zn content) of ash obtained after combustion of shoots of different ages. Results varied, but it was confirmed that pre-sowing exposure of seeds to this physical factor for 10-min has the most pronounced effect on K, Cu and Mn content increase (6%, 20%, 31% increase respectively) in the ash after the first year of vegetation as well as on Cu, K and Zn content increase (9%, 19%, 22% increase respectively) after the second year of vegetation. However, 30-min stimulation significantly increases Ca (8%), Mn (20%) and Fe (72%) content in ash after the second year as well as results in ash richer in Ca (22%), P (48%), K (70%) and Zn (95%) after the third year of Lavatera vegetation. The pre-sowing application of He-Ne laser light depending on the time of stimulation can intensify the content of preferable macro- and microelement groups in Lavatera ash, in respective cultivation years. It can be an innovative method of biomass ash enhancement and its more effective use in agriculture as commercial fertilizers substitute.


Subject(s)
Agriculture , Seeds , Biomass , Seeds/chemistry , Lasers , Coal Ash/analysis
6.
Biochim Biophys Acta Mol Cell Res ; 1870(1): 119378, 2023 01.
Article in English | MEDLINE | ID: mdl-36220452

ABSTRACT

Sulfhemoglobinemia is an incurable disease caused by an overdose of sulfur-containing drugs with oxidizing properties. Its diagnosis remains hindered due to the similarity of symptoms to other pathological state - methemoglobinemia, as well as contradictory information on the structure and characteristics of sulfhemoglobin. Herein, we present sulfhemoglobinemia model on living functional human erythrocytes, designed to recreate processes which could take place in a patient body in order to complement missing information and highlight distinctiveness of two hemoglobin (Hb) adducts formed after interaction with sulfur donors. Employed techniques, UV-Vis absorption, Raman, Fourier transformed infrared (FT-IR) and electronic circular dichroism (ECD) spectroscopies, allowed to distinguish and characterize Hb adduct with sulfur atom bounded directly to the iron ion (HbFeIII-SH), and irreversibly connected to the porphyrin ring (SHb - sulfhemoglobin). Presented herein results provided also new evidence on formation of both these hemoglobin adducts inside functional erythrocytes under oxidative conditions and during sulfur-containing drug presence, what can be further translated into future physiological studies. Moreover, we found that sulfur attachment to the porphyrin ring altered Hb structure and lead to changes in protein packing inside RBCs, eventually. Interestingly, measurement of blood drop smear by Raman spectroscopy occurred the most accurate method to differentiate HbFeIII-SH and SHb, indicating potential of this technique in sulfhemoglobinemia diagnosis.


Subject(s)
Porphyrins , Sulfhemoglobinemia , Humans , Sulfhemoglobin/analysis , Sulfhemoglobinemia/diagnosis , Spectroscopy, Fourier Transform Infrared , Hemoglobins , Sulfur
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121604, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35835058

ABSTRACT

Chirality transfer (also called induced chirality) is a phenomenon present in chiroptical spectra that manifests itself as a new band or bands of an achiral molecule interacting with a chiral one. In the Raman optical activity (ROA) spectroscopy, the bands of achiral solvents have been recently observed, but the latest papers have shown that they corresponded to the new ECD-Raman (eCP-Raman) effect. Here, we show an unambiguous example of chirality transfer observed in the ROA spectra. The spectra registered for the (1:1) mixtures of achiral benzonitrile with the enantiomers of 2,2,2-trifluoro-1-phenylethanol, 1-phenylethanol, and 1-phenylethylamine exhibited the v(CN) vibration band at about 2230 cm-1. The ROA measurements were repeated several times to ensure the reliability of the phenomenon. Calculations revealed the CN···HO or CN···HNH hydrogen bond formation accompanied by the π···π or CH···π interactions. The interaction strength was shown to be an important factor for the pronouncement of the ROA chirality transfer effect.


Subject(s)
Spectrum Analysis, Raman , Vibration , Optical Rotation , Reproducibility of Results , Spectrum Analysis, Raman/methods , Stereoisomerism
8.
Chem Commun (Camb) ; 58(28): 4524-4527, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35302568

ABSTRACT

In this study, we found that a recently discovered ECD-Raman effect dominated over the natural Raman optical activity in a series of atropisomeric naphthalenediimides, and we investigated the kind of information about the molecular structure that could be obtained from the spectra. The ECD-Raman effect is polarised Raman scattering modulated by electronic circular dichroism. We showed that the spectra significantly depended on the substitution of the solute and/or the change of the solvent. Moreover, the spectra could be well-predicted by the theory, thus providing an interesting tool to monitor the chirality of the binaphthyl compounds.


Subject(s)
Spectrum Analysis, Raman , Circular Dichroism , Molecular Structure , Solutions , Solvents/chemistry
9.
J Phys Chem B ; 126(2): 355-367, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34792364

ABSTRACT

Resonance Raman Optical Activity (RROA) appeared as a natural extension of the nonresonance branch. It combines the structural sensitivity of chiroptical spectroscopy with the signal enhancement coming from the resonance of molecular electronic transitions with the excitation laser light. However, the idea has been hampered by many technical and theoretical problems that are being clarified only in recent years. We provide the theoretical basis and several examples documenting the problems, achievements, and potential of RROA, in particular in biomolecular studies.


Subject(s)
Gases , Spectrum Analysis, Raman , Light , Optical Rotation , Spectrum Analysis, Raman/methods , Vibration
10.
Phys Chem Chem Phys ; 23(40): 23336-23340, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34633399

ABSTRACT

Intermolecular interactions sensitive to chirality occur in many biological events. We report a complex formation between a versatile vanadium-based probe and a chiral co-ligand monitored via the combination of electronic circular dichroism (ECD) and Raman scattering. This "ECD-Raman" effect was discovered relatively recently and can be measured using a Raman optical activity (ROA) spectrometer. Simulated spectra based on experimental ECD and degree of circularity (DOC) values agree with the observed ones. Sensitive recognition of the chiral enantiopure co-ligand is thus enabled by a combination of resonance of the excitation light with the diastereoisomeric complex, co-ligand complexation, circular dichroism, and polarized Raman scattering from the achiral solvent. Relatively dilute solutions could be detected (10-4 mol dm-3), about 1000× less than is necessary for conventional ROA detection of the pure co-ligand and comparable to concentrations needed for conventional ECD spectroscopy. The results thus show that differential ECD-Raman measurements can be conveniently used to monitor molecular interactions and molecular spectroscopic properties.

11.
Angew Chem Int Ed Engl ; 60(39): 21205-21210, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34216087

ABSTRACT

Resonance Raman optical activity (RROA) possesses all aspects of a sensitive tool for molecular detection, but its measurement remains challenging. We demonstrate that reliable recording of RROA of chiral colorful compounds is possible, but only after considering the effect of the electronic circular dichroism (ECD) on the ROA spectra induced by the dissolved chiral compound. We show RROA for a number of model vitamin B12 derivatives that are chemically similar but exhibit distinctively different spectroscopic behavior. The ECD/ROA effect is proportional to the concentration and dependent on the optical pathlength of the light propagating through the sample. It can severely alter relative band intensities and signs in the natural RROA spectra. The spectra analyses are supported by computational modeling based on density functional theory. Neglecting the ECD effect during ROA measurement can lead to misinterpretation of the recorded spectra and erroneous conclusions about the molecular structure.

12.
Sensors (Basel) ; 21(7)2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33916600

ABSTRACT

The aim of this paper is to compare the results of kinematic viscosity of lubricating oils measurements at 40 °C, obtained with three different rapid evaluation devices, and the standardized method using an Ubbelohde Capillary viscometer. The following instruments were selected to measure: a mid-FTIR spectrophotometer, a microchannel viscometer, and a Stabinger viscometer. The study material comprised 42 fresh engine oils, all of which are commercially available. The main data analysis tools used in the study were multiple regression, Mahala Nobis distance, post-hoc analysis, and the Wilcoxon signed-rank test with the Bonferroni correction. Consistent outcomes were obtained for the Stabinger viscometer only, whereas the microchannel viscometer and the mid-FTIR spectrophotometer were not as precise as the reference method. It was also found that the results obtained with the use of the mid-FTIR spectrophotometer were burdened with a very large measurement error. Therefore, a very careful approach is suggested when choosing these instruments. The study fills an important gap in empirical research in the context of the reliability of measurement results obtained using various research techniques.

13.
Sci Rep ; 10(1): 16436, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009483

ABSTRACT

Fuels and their components accumulate in soil, and many soil organisms are exposed to this pollution. Compared to intensive research on the effect of conventional fuel on soil, very few studies have been conducted on soil ecotoxicity of biofuels. Considering the limited information available, the present study evaluated the changes caused by the presence of biodiesel and diesel fuel in soil. The reaction of higher plants and soil organisms (microbial communities and invertebrates) was analysed. Conventional diesel oil and two types of biodiesel (commercial and laboratory-made) were introduced into the soil. Two levels of contamination were applied-5 and 15% (w/w per dry matter of soil). The plate method was used to enumerate microorganisms from soil contaminated with biodiesel and diesel fuel. Phytotoxicity tests were conducted by a 3-day bioassay based on the seed germination and root growth of higher plant species (Sorghum saccharatum and Sinapis alba). Fourteen-day ecotoxicity tests on earthworm were performed using Eisenia fetida. Based on the results of the conducted tests it was found out that the organisms reacted to the presence of fuels in a diverse manner. As to the microorganisms, both the growth and reduction of their number were noted. The reaction depended on the group of microorganisms, type of fuel and dose of contamination. The lipolytic and amylolytic microorganisms as well as Pseudomonas fluorescens bacteria were particularly sensitive to the presence of fuels, especially biodiesel. Fuels, even at a high dose, stimulated the growth of fungi. Monocotyledonous sugar sorghum plants were more sensitive to the presence of fuels than dicotyledonous white mustard. There was also a significant negative impact of contamination level on plant growth and development. Biodiesel, to a greater extent than conventional fuel, adversely affected the survival and volume of earthworms.

14.
Molecules ; 25(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987678

ABSTRACT

This work demonstrates resonance Raman optical activity (RROA) spectra of three truncated vitamin B12 derivatives modified within the nucleotide loop. Since truncated cobalamins possess sufficiently high rotational strength in the range of ROA excitation (532 nm), it was possible to record their spectra in the resonance condition. They showed several distinct spectral features allowing for the distinguishing of studied compounds, in contrast to other methods, i.e., UV-Vis absorption, electronic circular dichroism, and resonance Raman spectroscopy. The improved capacity of the RROA method is based here on the excitation of molecules via more than two electronic states, giving rise to the bisignate RROA spectrum, significantly distinct from a parent Raman spectrum. This observation is an important step in the dissemination of using RROA spectroscopy in studying the complex structure of corrinoids which may prove crucial for a better understanding of their biological role.


Subject(s)
Vitamin B 12/chemistry , Circular Dichroism , Molecular Structure , Spectrum Analysis, Raman
15.
J Phys Chem Lett ; 11(13): 5037-5043, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32502349

ABSTRACT

In this work, cobalamins with different upper axial substituents and a cobalamin derivative with a ring modification were studied using chiroptical spectroscopies, in particular resonance Raman optical activity (RROA), to shed light on the influence of structural modifications on RROA spectra in these strongly chiral systems in resonance with multiple excited states at 532 nm excitation. We have demonstrated that for these unique systems RROA possesses augmented structural specificity, surpassing resonance Raman spectroscopy and enabling at the same time measurement of cobalamins at fairy low concentrations of ∼10-5 mol dm-3. The enhanced structural specificity of RROA is a result of bisignate spectra due to resonance via more than one electronic state. The observation of increased structural capability of RROA for cobalamins opens a new perspective for studying chiral properties of other biological systems incorporating d-metal ions.


Subject(s)
Cobamides/chemistry , Cobamides/radiation effects , Light , Molecular Structure , Optical Rotation , Spectrum Analysis, Raman
16.
Chem Sci ; 12(3): 911-916, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-34163857

ABSTRACT

Raman optical activity (ROA) spectra recorded for a chiral naphthalene diimide derivative (nBu-NDI-BINAM) dissolved in a series of solvents exhibit strong solute to solvent induced chirality with: (1) dominating bands of solvents, (2) nBu-NDI-BINAM resonance ROA (RROA) bands which are barely visible, (3) monosignate RROA Solvent spectra with an unexpected sign concordant with that of the ECD band of the resonant electronic state, (4) bisignate RROA bands for a few solvents, and (5) superposition of non-resonant and resonant ROA bands of the chiral solvents. The unusual ROA enhancement was explained in terms of resonance energy transfer with resonant Raman emission. The surprising RROA sign-switching was found to be due to specific conformational equilibria where one solute conformer dominates in the ground and the other in the first excited singlet state, and, the signs of the related ECD bands of these two conformers are opposite.

17.
Angew Chem Int Ed Engl ; 58(25): 8383-8388, 2019 06 17.
Article in English | MEDLINE | ID: mdl-30974037

ABSTRACT

Carotenoid microcrystals, extracted from cells of carrot roots and consisting of 95 % of achiral ß-carotene, exhibit a very intense chiroptical (ECD and ROA) signal. The preferential chirality of crystalline aggregates that consist mostly of achiral building blocks is a newly observed phenomenon in nature, and may be related to asymmetric information transfer from the chiral seeds (small amount of α-carotene or lutein) present in carrot cells. To confirm this hypothesis, we synthesized several model aggregates from various achiral and chiral carotenoids. Because of the sergeant-and-soldier behavior, a small number of chiral sergeants (α-carotene or astaxanthin) force the achiral soldier molecules (ß- or 11,11'-[D2 ]-ß-carotene) to jointly form supramolecular assemblies of induced chirality. The chiral amplification observed in these model systems confirmed that chiral microcrystals appearing in nature might consist predominantly of achiral building blocks and their supramolecular chirality might result from the co-crystallization of chiral and achiral analogues.


Subject(s)
Carotenoids/isolation & purification , Daucus carota/chemistry , Plant Roots/chemistry , Carotenoids/chemistry , Crystallization , Models, Molecular , Molecular Structure , Spectrum Analysis, Raman
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 206: 597-612, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30196153

ABSTRACT

This comprehensive study on selected 14 carbohydrates in water solution is an extension of previously published one focused only on solid state analysis. Here, Raman spectroscopy was used as a dedicated method for analysis of carbohydrates in solution, both using a normal effect (RS) and its chiral analogue: Raman Optical Activity spectroscopy (ROA). The compounds were selected as biologically important and representative of all groups: monosaccharides, disaccharides, trisaccharides, cyclodextrines and polysaccharides. RS and ROA spectra are presented together with an expanded discussion on various structures and conformations of studied carbohydrates in the solution taking into account particular regions, i.e. (1) low wavenumber region (250-600 cm-1), (2) anomeric region (600-950 cm-1), (3) fingerprint region (950-1200 cm-1) and (4) CH2and COH deformations region (1200-1500 cm-1). So, the following information can be obtained about: (1) the absolute configuration of the anomeric centre; (2) the configuration of the anomeric centre and the orientation of the anomeric hydroxyl group; (3) the ring structures and the relative orientation of substituents and (4) the conformation of the exocyclic CH2OH (4), respectively. Raman spectroscopy and Raman Optical Activity were shown as unique tools to study complex structures of carbohydrates.


Subject(s)
Carbohydrates/analysis , Carbohydrates/chemistry , Spectrum Analysis, Raman/methods , Optical Rotation , Stereoisomerism
19.
J Nat Prod ; 81(12): 2654-2666, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30562024

ABSTRACT

We have isolated mixtures of [5]- and [3]-ladderanoic acids 1a and 2a from the biomass of an anammox bioreactor and have separated the acids and their phenacyl esters for the first time by HPLC. The absolute configurations of the naturally occurring acids and their phenacyl esters are assigned as R at the site of side-chain attachment by comparison of experimental specific rotations with corresponding values predicted using quantum chemical (QC) methods. The absolute configurations for 1a and 2a were independently verified by comparison of experimental Raman optical activity spectra with corresponding spectra predicted using QC methods. The configurational assignments of 1a and 2a and of the phenacyl ester of 1a were also confirmed by X-ray crystallography.


Subject(s)
Lipids/chemistry , Biomass , Bioreactors , Circular Dichroism , Crystallography, X-Ray , Esters , Lipids/isolation & purification , Molecular Conformation , Molecular Structure , Spectrum Analysis, Raman , Stereoisomerism
20.
Phys Chem Chem Phys ; 20(26): 18038-18046, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29932184

ABSTRACT

Biomolecular aggregation is omnipresent in nature and important for metabolic processes or in medical treatment; however, the phenomenon is rather difficult to predict or understand on the basis of computational models. Recently, we found that electronic circular dichroism (ECD) spectroscopy and closely related resonance Raman optical activity (RROA) are extremely sensitive to the aggregation mechanism and structure of the astaxanthin dye. In the present study, molecular dynamics (MD) and quantum chemical (QC) computations (ZIndo/S, TDDFT) are used to link the aggregate structure with ECD spectral shapes. Realistic absorption and ECD intensities were obtained and the simulations reproduced many trends observed experimentally, such as the prevalent sign pattern and dependence of the aggregate structure on the solvent type. The computationally cheaper ZIndo/S method provided results very similar to those obtained by TDDFT. In the future, the accuracy of the combined MD/QC methodology of spectra interpretation should be improved to provide more detailed information on astaxanthin aggregates and similar macromolecular systems.


Subject(s)
Circular Dichroism/methods , Molecular Dynamics Simulation , Dimerization , Molecular Structure , Quantum Theory , Spectrum Analysis, Raman/methods , Xanthophylls/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...