Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37960625

ABSTRACT

Collaborative robots (cobots) have largely replaced conventional industrial robots in today's workplaces, particularly in manufacturing setups, due to their improved performance and intelligent design. In the framework of Industry 5.0, humans are working alongside cobots to accomplish the required level of automation. However, human-robot interaction has brought up concerns regarding human factors (HF) and ergonomics. A human worker may experience cognitive stress as a result of cobots' irresponsive nature in unpredictably occurring situations, which adversely affects productivity. Therefore, there is a necessity to measure stress to enhance a human worker's performance in a human-robot collaborative environment. In this study, factory workers' mental workload was assessed using physiological, behavioural, and subjective measures. Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals were collected to acquire brain signals and track hemodynamic activity, respectively. The effect of task complexity, cobot movement speed, and cobot payload capacity on the mental stress of a human worker were observed for a task designed in the context of a smart factory. Task complexity and cobot speed proved to be more impactful. As physiological measures are unbiased and more authentic means to estimate stress, eventually they may replace the other conventional measures if they prove to correlate with the results of traditional ones. Here, regression and artificial neural networks (ANN) were utilised to determine the correlation between physiological data and subjective and behavioural measures. Regression performed better for most of the targets and the best correlation (rsq-adj = 0.654146) was achieved for predicting missed beeps, a behavioural measure, using a combination of multiple EEG and fNIRS predictors. The k-nearest neighbours (KNN) algorithm was used to evaluate the accuracy of correlation between traditional measures and physiological variables, with the highest accuracy of 77.8% achieved for missed beeps as the target. Results show that physiological measures can be more insightful and have the tendency to replace other biased parameters.


Subject(s)
Brain , Workload , Humans , Hemodynamics , Neural Networks, Computer , Cognition
2.
Int J Sports Med ; 44(12): 896-905, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37164326

ABSTRACT

Due to the mildness of initial injury, many athletes with recurrent mild traumatic brain injury (mTBI) are misdiagnosed with other neuropsychiatric illnesses. This study was designed as a proof-of-principle feasibility trial for athletic trainers at a sports facility to generate electroencephalograms (EEGs) from student athletes for discriminating (mTBI) associated EEGs from uninjured ones. A total of 47 EEGs were generated, with 30 athletes recruited at baseline (BL) pre-season, after a concussive injury (IN), and post-season (PS). Outcomes included: 1) visual analyses of EEGs by a neurologist; 2) support vector machine (SVM) classification for inferences about whether particular groups belonged to the three subgroups of BL, IN, or PS; and 3) analyses of EEG synchronies including phase locking value (PLV) computed between pairs of distinct electrodes. All EEGs were visually interpreted as normal. SVM classification showed that BL and IN could be discriminated with 81% accuracy using features of EEG synchronies combined. Frontal inter-hemispheric phase synchronization measured by PLV was significantly lower in the IN group. It is feasible for athletic trainers to record high quality EEGs from student athletes. Also, spatially localized metrics of EEG synchrony can discriminate mTBI associated EEGs from control EEGs.


Subject(s)
Athletic Injuries , Brain Concussion , Humans , Brain Concussion/diagnosis , Athletic Injuries/diagnosis , Electroencephalography , Athletes
3.
Sci Rep ; 10(1): 12927, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32737352

ABSTRACT

Laparoscopic surgery can be exhausting and frustrating, and the cognitive load experienced by surgeons may have a major impact on patient safety as well as healthcare economics. As cognitive load decreases with increasing proficiency, its robust assessment through physiological data can help to develop more effective training and certification procedures in this area. We measured data from 31 novices during laparoscopic exercises to extract features based on cardiac and ocular variables. These were compared with traditional behavioural and subjective measures in a dual-task setting. We found significant correlations between the features and the traditional measures. The subjective task difficulty, reaction time, and completion time were well predicted by the physiology features. Reaction times to randomly timed auditory stimuli were correlated with the mean of the heart rate ([Formula: see text]) and heart rate variability ([Formula: see text]). Completion times were correlated with the physiologically predicted values with a correlation coefficient of 0.84. We found that the multi-modal set of physiology features was a better predictor than any individual feature and artificial neural networks performed better than linear regression. The physiological correlates studied in this paper, translated into technological products, could help develop standardised and more easily regulated frameworks for training and certification.


Subject(s)
Cognition , Laparoscopy/education , Reaction Time , Simulation Training , Surgeons/economics , Adult , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...