Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1868(3): 130562, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218459

ABSTRACT

The biomimetic nature of supramolecular systems, the structural similarity of synthetic surfactants to biomolecules (lipids, proteins), provide them with high membranotropy, the ability to overcome biological barriers, and affinity towards biosubstances. Despite rather high toxicity cationic surfactants are of importance as antimicrobial agents, gene nanocarriers and mitochondria targeted ligands. To minimize this limitation, cationic amphiphilic matrix undergoes modification with various functional groups. In this work, new piperidinium cationic surfactants containing one or two carbamate fragments were prepared; their aggregation behavior was systematically studied by tensiometery, spectrophotometry and fluorimetry. The presence of a carbamate fragment leads to a 2-3-fold decrease in critical micelle concentration and to a significant increase in solubilization capacity compared to unsubstituted analogue. Evaluation of the antimicrobial effect showed that all compounds exhibit high bactericidal and fungicidal activity against a wide range of pathogenic microorganisms, including their resistant forms. Importantly, the introducing carbamate moiety allows of decreasing hemolytic activity of cationic surfactants. The data obtained make it possible to recommend carbamate piperidinium surfactants as effective biocompatible and biodegradable nanocontainers for hydrophobic probes with high antimicrobial effect and moderate hemolytic activity.


Subject(s)
Anti-Infective Agents , Surface-Active Agents , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Carbamates/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Micelles
2.
Int J Mol Sci ; 24(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003588

ABSTRACT

A central event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of senile plaques composed of aggregated amyloid-ß (Aß) peptides. The main class of drugs currently used for the treatment of AD are the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. In this study, it has been shown that Aß augmented AChE activity in vitro, maximum activation of 548 ± 5% was achieved following 48 h of incubation with 10 µM of Aß1-40, leading to a 7.7-fold increase in catalytic efficiency. The observed non-competitive type of AChE activation by Aß1-40 was associated with increased Vmax and unchanged Km. Although BChE activity also increased following incubation with Aß1-40, this was less efficiently achieved as compared with AChE. Ex vivo electrophysiological experiments showed that 10 µM of Aß1-40 significantly decreased the effect of the AChE inhibitor huperzine A on the synaptic potential parameters.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Acetylcholinesterase , Amyloid beta-Peptides , Butyrylcholinesterase , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology
3.
Mater Horiz ; 10(12): 5354-5370, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37814922

ABSTRACT

In this focus article, we provide a scrutinizing analysis of transmission electron microscopy (TEM) and dynamic light scattering (DLS) as the two common methods to study the sizes of nanoparticles with focus on the application in pharmaceutics and drug delivery. Control over the size and shape of nanoparticles is one of the key factors for many biomedical systems. Particle size will substantially affect their permeation through biological membranes. For example, an enhanced permeation and retention effect requires a very narrow range of sizes of nanoparticles (50-200 nm) and even a minor deviation from these values will substantially affect the delivery of drug nanocarriers to the tumour. However, amazingly a great number of research papers in pharmaceutics and drug delivery report a striking difference in nanoparticle size measured by the two most popular experimental techniques (TEM and DLS). In some cases, this difference was reported to be 200-300%, raising the question of which size measurement result is more trustworthy. In this focus article, we primarily focus on the physical aspects that are responsible for the routinely observed mismatch between TEM and DLS results. Some of these factors such as concentration and angle dependencies are commonly underestimated and misinterpreted. We convincingly show that correctly used experimental procedures and a thorough analysis of results generated using both methods can eliminate the DLS and TEM data mismatch completely or will make the results much closer to each other. Also, we provide a clear roadmap for drug delivery and pharmaceutical researchers to conduct reliable DLS measurements.


Subject(s)
Drug Delivery Systems , Nanoparticles , Dynamic Light Scattering , Microscopy, Electron, Transmission
4.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985966

ABSTRACT

OBJECTIVES: This study was aimed at the investigation of the supramolecular systems based on cationic surfactants bearing cyclic head groups (imidazolium and pyrrolidinium) and polyanions (polyacrylic acid (PAA) and human serum albumin (HSA)), and factors governing their structural behavior to create functional nanosystems with controlled properties. Research hypothesis. Mixed PE-surfactant complexes based on oppositely charged species are characterized by multifactor behavior strongly affected by the nature of both components. It was expected that the transition from a single surfactant solution to an admixture with PE might provide synergetic effects on structural characteristics and functional activity. To test this assumption, the concentration thresholds of aggregation, dimensional and charge characteristics, and solubilization capacity of amphiphiles in the presence of PEs have been determined by tensiometry, fluorescence and UV-visible spectroscopy, and dynamic and electrophoretic light scattering. RESULTS: The formation of mixed surfactant-PAA aggregates with a hydrodynamic diameter of 100-180 nm has been shown. Polyanion additives led to a decrease in the critical micelle concentration of surfactants by two orders of magnitude (from 1 mM to 0.01 mM). A gradual increase in the zeta potential of HAS-surfactant systems from negative to positive value indicates that the electrostatic mechanism contributes to the binding of components. Additionally, 3D and conventional fluorescence spectroscopy showed that imidazolium surfactant had little effect on HSA conformation, and component binding occurs due to hydrogen bonding and Van der Waals interactions through the tryptophan amino acid residue of the protein. Surfactant-polyanion nanostructures improve the solubility of lipophilic medicines such as Warfarin, Amphotericin B, and Meloxicam. PERSPECTIVES: Surfactant-PE composition demonstrated beneficial solubilization activity and can be recommended for the construction of nanocontainers for hydrophobic drugs, with their efficacy tuned by the variation in surfactant head group and the nature of polyanions.

5.
Pharmaceutics ; 14(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36559178

ABSTRACT

Interaction between cationic surfactants and nucleic acids attracts much attention due to the possibility of using such systems for gene delivery. Herein, the lipoplexes based on cationic surfactants with imidazolium head group bearing methoxyphenyl fragment (MPI-n, n = 10, 12, 14, 16) and nucleic acids (oligonucleotide and plasmid DNA) were explored. The complex formation was confirmed by dynamic/electrophoretic light scattering, transmission electron microscopy, fluorescence spectroscopy, circular dichroism, and gel electrophoresis. The nanosized lipoplex formation (of about 100-200 nm), contributed by electrostatic, hydrophobic interactions, and intercalation mechanism, has been shown. Significant effects of the hydrocarbon tail length of surfactant and the type of nucleic acid on their interaction was revealed. The cytotoxic effect and transfection ability of lipoplexes studied were determined using M-HeLa, A549 cancer cell lines, and normal Chang liver cells. A selective reduced cytotoxic effect of the complexes on M-HeLa cancer cells was established, as well as a high ability of the systems to be transfected into cancer cells. MPI-n/DNA complexes showed a pronounced transfection activity equal to the commercial preparation Lipofectamine 3000. Thus, it has been shown that MPI-n surfactants are effective agents for nucleic acid condensation and can be considered as potential non-viral vectors for gene delivery.

6.
Pharmaceutics ; 14(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36559339

ABSTRACT

Chitosan-decorated liposomes were proposed for the first time for the intranasal delivery of acetylcholinesterase (AChE) reactivator pralidoxime chloride (2-PAM) to the brain as a therapy for organophosphorus compounds (OPs) poisoning. Firstly, the chitosome composition based on phospholipids, cholesterol, chitosans (Cs) of different molecular weights, and its arginine derivative was developed and optimized. The use of the polymer modification led to an increase in the encapsulation efficiency toward rhodamine B (RhB; ~85%) and 2-PAM (~60%) by 20% compared to conventional liposomes. The formation of monodispersed and stable nanosized particles with a hydrodynamic diameter of up to 130 nm was shown using dynamic light scattering. The addition of the polymers recharged the liposome surface (from -15 mV to +20 mV), which demonstrates the successful deposition of Cs on the vesicles. In vitro spectrophotometric analysis showed a slow release of substrates (RhB and 2-PAM) from the nanocontainers, while the concentration and Cs type did not significantly affect the chitosome permeability. Flow cytometry and fluorescence microscopy qualitatively and quantitatively demonstrated the penetration of the developed chitosomes into normal Chang liver and M-HeLa cervical cancer cells. At the final stage, the ability of the formulated 2-PAM to reactivate brain AChE was assessed in a model of paraoxon-induced poisoning in an in vivo test. Intranasal administration of 2-PAM-containing chitosomes allows it to reach the degree of enzyme reactivation up to 35 ± 4%.

7.
ACS Omega ; 7(29): 25741-25750, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35910111

ABSTRACT

New hybrid liposomes based on cationic amphiphiles with different structures of the head group (cetyltrimethylammonium bromide (CTAB), 3-hexadecyl-1-hydroxyethylimidazolium bromide (IA-16(OH)), 1-(butylcarbamoyl)oxyethyl-3-hexadecylimidazolium bromide (IAC 16(Bu)), and hexadecylmethylpyrrolidinium bromide (PR-16)) were developed for transdermal administration of nonsteroidal anti-inflammatory drugs. The different surfactant/lipid compositions were studied to obtain stable liposomes with high functionality. The hydrodynamic diameter of cationic liposomes was ∼110 nm. An admixture of cationic surfactants and PC liposomes improves the physicochemical properties of vesicles and transdermal diffusion rate and prolongs the release of drugs. Liposomal diclofenac sodium (DS) and ketoprofen (KP) were tested (using Franz cells) for transdermal penetration. Drug diffusion monitoring for 48 h demonstrated that the maximum DS and KP penetration through the synthetic membranes (Strat-M) is characterized by values of 255 ± 2 and 186 ± 3 µg/cm2, respectively. The influence of the surfactant head group on the properties (stability, release profile, permeability) of cationic liposomes was shown for the first time. While the drug specificity is evident for the rate of release, the permeability increases as follows: conventional liposomes < CTAB/PC < PR-16/PC < IAC-16(Bu)/PC < IA-16(OH)/PC for both medicines. The rat paw edema model was used to assess the anti-inflammatory effect of the IA-16(OH)/PC leader formulation in vivo. It was found that liposomal DS and KP are effective for relieving rat paw edema. It should be noted that DS-loaded hybrid liposomes demonstrated the highest therapeutic efficacy compared to conventional vesicles.

8.
Langmuir ; 38(16): 4921-4934, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35405069

ABSTRACT

Novel cationic amphiphiles of the 3-alkyl-1-(4-methoxyphenyl)-1H-imidazol-3-ium bromide series bearing methoxyphenyl fragments (MPI-n) have been synthesized. Their aggregation properties in aqueous solutions, solubilization capacity, and hemolytic and antimicrobial activities have been investigated by a number of physicochemical methods. Using tensiometry, conductometry, and fluorescence spectroscopy, it was shown that the MPI-n have lower CMCs than their nonfunctionalized counterparts. The unusual alkyl-chain-length-dependent morphology of aggregates is testified for this homological series. Amphiphiles with 12, 14, and 16 alkyl tails are characterized by the formation of micellar aggregates, while a surfactant with a decyl tail is characterized by the formation of larger aggregates with lower surface curvature. The MPI-10 aggregate morphology was rationalized in terms of the packing parameter consideration and was supported by size measurements and the fluorescence probe techniques, which showed that vesicle-like aggregates in close-packing mode probably occur. MPI-n aggregates have exhibited a high solubilization capacity toward hydrophobic azo dye Orange OT. Importantly, amphiphiles studied showed (i) high bacteriostatic activity at the level of ciprofloxacin; (ii) high bactericidal action against all Gram-positive bacteria, including methicillin-resistant strains; (iii) bactericidal properties against Gram-negative bacteria; and (iv) low hemolytic activity.


Subject(s)
Micelles , Surface-Active Agents , Anti-Bacterial Agents/pharmacology , Cations , Hydrophobic and Hydrophilic Interactions , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
9.
ACS Omega ; 7(3): 3073-3082, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35097302

ABSTRACT

New 1-cetyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide complexes with copper(II) bromide and lanthanum(III) nitrate were characterized using dynamic light scattering and transmission electron microscopy, with self-assembly and the morphological behavior elucidated. For the lanthanum(III) nitrate complex, the 3D crystal structure was characterized using X-ray diffractometry. These metallosurfactants were tested as antitumor agents, and a high cytotoxic effect comparable with doxorubicin was revealed against the M-HeLa and A-549 cell lines. Both complexes were 2 times more active toward the MCF-7 cell line than the breast cancer drug tamoxifen. The cytotoxic mechanism of complexes is assumed to be related to the induction of apoptosis through the mitochondrial pathway.

10.
Nanotechnology ; 33(15)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34959230

ABSTRACT

In this work, a noncovalent strategy was successfully used to modify colloidal stability andin vitroandin vivoefficacy of two amphiphilic formulations of the anti-inflammatory drug indomethacin. Namely, nanoemulsions and microemulsions based on oleic acid and nonionic surfactants have been produced and compared. The influence of cationic surfactants cetyltrimethylammonium bromide and its carbamate bearing analogue on the size characteristics, stability and ability to provide prolonged action of loaded drug indomethacin has been evaluated. Adding the positively charged molecules in the surface layer of nanoemulsions and microemulsions has shown the stability increase along with maintaining the size characteristics and homogeneity in time. Moreover, the carbamate modified analogue demonstrated beneficial behavior. Indomethacin loaded in microemulsions and nanoemulsions showed prolonged-release (10%-15% release for 5 h) compared to a free drug (complete release for 5 h). The rate of release of indomethacin from nanoemulsions was slightly higher than from microemulsions and insignificantly decreased with an increase in the concentration of the cationic surfactant. For carbamate surfactant nanocarrier loaded with fluorescence probe Nile Red, the ability to penetrate into the cell was supported by flow cytometry study and visualized by fluorescence microscopy.In vitrotests on anti-inflammatory activity of the systems demonstrated that the blood cell membrane stabilization increased in the case of modified microemulsion. The anti-inflammatory activity of the encapsulated drug was tested in rats using a carrageenan-induced edema model. Nanoemulsions without cationic surfactants appeared more efficient compared to microemulsions. Indomethacin emulsion formulations with carbamate surfactant added showed slower carrageenan-induced edema progression compared to unmodified compositions. Meanwhile, the edema completely disappeared upon treatment with emulsion loaded indomethacin after 4 h in the case of microemulsions versus 5 h in the case of nanoemulsions.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Emulsions , Indomethacin , Surface-Active Agents , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Line , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Edema/metabolism , Emulsions/chemistry , Emulsions/pharmacokinetics , Humans , Indomethacin/chemistry , Indomethacin/pharmacokinetics , Indomethacin/pharmacology , Male , Rats , Rats, Wistar , Solubility , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacokinetics
11.
Int J Mol Sci ; 22(23)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34884951

ABSTRACT

Antimicrobial, membranotropic and cytotoxic properties of dicationic imidazolium surfactants of n-s-n (Im) series with variable length of alkyl group (n = 8, 10, 12, 14, 16) and spacer fragment (s = 2, 3, 4) were explored and compared with monocationic analogues. Their activity against a representative range of Gram-positive and Gram-negative bacteria, and also fungi, is characterized. The relationship between the biological activity and the structural features of these compounds is revealed, with the hydrophobicity emphasized as a key factor. Among dicationic surfactants, decyl derivatives showed highest antimicrobial effect, while for monocationic analogues, the maximum activity is observed in the case of tetradecyl tail. The leading compounds are 2-4 times higher in activity compared to reference antibiotics and prove effective against resistant strains. It has been shown that the antimicrobial effect is not associated with the destruction of the cell membrane, but is due to specific interactions of surfactants and cell components. Importantly, they show strong selectivity for microorganism cells while being of low harm to healthy human cells, with a SI ranging from 30 to 100.


Subject(s)
Anti-Infective Agents/chemical synthesis , Fungi/growth & development , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Imidazoles/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Line , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hemolysis , Hydrophobic and Hydrophilic Interactions , Imidazoles/chemistry , Imidazoles/pharmacology , Microbial Sensitivity Tests , Microbial Viability/drug effects , Structure-Activity Relationship , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
12.
Int J Pharm ; 604: 120776, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34098055

ABSTRACT

Novel nanocomposite system based on mesoporous silica nanoparticles (MSNs) noncovalently modified with hexadecyltriphenylphosphonium bromide (HTPPB) has been prepared, thoroughly characterized and used for encapsulation of model cargo Rhodamine B (RhB). The high encapsulation efficacy of this dye by HTPPB-modified mesoporous particles was demonstrated by spectrophotometry and thermography techniques. The bioavailability of MSN@HTPPB was testified. Cytotoxicity assay revealed that a marked suppression of M-HeLa cancer cells (epithelioid carcinoma of the cervix) occurs at concentration of 0.06 µg/mL, while the higher viability of Chang liver normal cell line was preserved in the concentration range of 0.98-0.06 µg/mL. Hemolysis assay demonstrated that only 2% of red blood cells are destructed at ~ 30 µg/mL concentration. This allows us to select the most harmless compositions based on MSN@HTPPB with minimal side effects toward normal cells and recommend them for the development of antitumor formulations. Fluorescence microscopy technique testified satisfactory penetration of HTPPB-modified carriers into M-HeLa cells. Importantly, modification of the MSN with HTPPB is shown to promote efficient delivery to mitochondria. To the best of our knowledge, it is one of the first successful examples of noncovalent surface modification of the MSNs with lipophilic phosphonium cation that improves targeted delivery of loads to mitochondria.


Subject(s)
Nanoparticles , Silicon Dioxide , Cations , Drug Carriers , Drug Delivery Systems , Female , HeLa Cells , Humans , Mitochondria , Porosity
13.
Int J Pharm ; 605: 120803, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34144135

ABSTRACT

New liposomes modified with pyrrolidinium surfactants containing a hydroxyethyl fragment (CnPB, n = 12, 14, 16) were prepared for transdermal delivery of non-steroidal anti-inflammatory drugs. In order to obtain the optimal composition, the surfactant/lipid molar ratio (0.02/1; 0.029/1; 0.04/1) and the amphiphile hydrocarbon tail length were varied. Rhodamine B was loaded in all formulations, while meloxicam and ketoprofen in selected ones. For liposomes studied the hydrodynamic diameter was in the range of 80-130 nm, the zeta potential ranged from +35 to +50 mV, EE was 75-99%. Liposome modification leads to a prolonged release of the rhodamine B (up to 10-12 h) and faster release of non-steroidal drugs (up to 7-8 h) in vitro. The ability to cross the skin barrier using Franz cells was investigated for liposomal meloxicam and ketoprofen. The total amount of meloxicam and ketoprofen passed through the Strat-M® membranes during 51 h was 51-114 µg/cm2 and 87-105 µg/cm2 respectively. The evaluation of transdermal diffusion ex vivo showed that total amount of liposomal ketoprofen passed through the skin during 51 h was 140-162 µg/cm2. Liposomes modified with C16PB were found as the most effective inflammation reducing formulation in the carrageenan edema model of rat paw.


Subject(s)
Ketoprofen , Liposomes , Administration, Cutaneous , Animals , Anti-Inflammatory Agents, Non-Steroidal , Meloxicam , Particle Size , Rats , Skin
14.
Molecules ; 26(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921656

ABSTRACT

The solution behavior and physicochemical characteristics of polymer-colloid complexes based on cationic imidazolium amphiphile with a dodecyl tail (IA-12) and polyacrylic acid (PAA) or DNA decamer (oligonucleotide) were evaluated using tensiometry, conductometry, dynamic and electrophoretic light scattering and fluorescent spectroscopy and microscopy. It has been established that PAA addition to the surfactant system resulted in a ca. 200-fold decrease in the aggregation threshold of IA-12, with the hydrodynamic diameter of complexes ranging within 100-150 nm. Electrostatic forces are assumed to be the main driving force in the formation of IA-12/PAA complexes. Factors influencing the efficacy of the complexation of IA-12 with oligonucleotide were determined. The nonconventional mode of binding with the involvement of hydrophobic interactions and the intercalation mechanism is probably responsible for the IA-12/oligonucleotide complexation, and a minor contribution of electrostatic forces occurred. The latter was supported by zeta potential measurements and the gel electrophoresis technique, which demonstrated the low degree of charge neutralization of the complexes. Importantly, cellular uptake of the IA-12/oligonucleotide complex was confirmed by fluorescence microscopy and flow cytometry data on the example of M-HeLa cells. While single IA-12 samples exhibit roughly similar cytotoxicity, IA-12-oligonucleotide complexes show a selective effect toward M-HeLa cells (IC50 1.1 µM) compared to Chang liver cells (IC50 23.1 µM).


Subject(s)
Acrylic Resins/chemistry , Cations/chemistry , Colloids/chemistry , DNA/chemistry , Polymers/chemistry , Cell Line, Tumor , Flow Cytometry , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Imidazoles/chemistry , Microscopy, Fluorescence
15.
Biochim Biophys Acta Gen Subj ; 1864(12): 129728, 2020 12.
Article in English | MEDLINE | ID: mdl-32898623

ABSTRACT

BACKGROUND: The development of new effective microbicide surfactants and the search for the structure-biological activity relationship is an important and promising problem. Surfactants containing imidazolium fragment attract attention of researchers in the field of chemotherapy, because these compounds often exhibit high antimicrobial activity. The aim of this work is to identify the newly synthesized surfactants from the viewpoint of their potential usefulness in pharmacology and medicine. For this purpose, a detailed study of antimicrobial, hemolytic and cytotoxic activity of dicationic alkylimidazolium surfactants of the m-s-m (Im) series with a variable length of a hydrocarbon tail (m = 10, 12) and a spacer fragment (s = 2, 3, 4) was carried out. METHODS: Aggregation of surfactants in solutions was estimated by tensiometry and conductivity. Antimicrobial activity was determined by the serial dilution technique. Cytotoxic effects of the test compounds on human cancer and normal cells were estimated by means of the multifunctional Cytell Cell Imaging system. Cell Apoptosis Analysis was made by flow cytometry. RESULTS: The test compounds show high antimicrobial activity against a wide range of test microorganisms and do not possess high hemolytic activity. Importantly, some of them display a bactericidal activity comparable to ciprofloxacin fluoroquinolone antibiotic against Gram-positive bacteria, including methicillin-resistant strains of S. aureus (MRSA). The cytotoxicity of the compounds against normal and tumor human cell lines has been tested as well, with cytotoxic effect and selectivity strongly controlled by structural factor and kind of cell line. Superior results were revealed for compound 10-4-10 (Im) in the case of HuTu 80 cell line (duodenal adenocarcinoma), for which IC50 value at the level of doxorubicin and a markedly higher selectivity index (SI 7.5) were demonstrated. Flow cytometry assay shows apoptosis-inducing effect of this compound on HuTu 80 cells, through significant changes in the potential of mitochondrial membrane. MAJOR CONCLUSIONS: Antibacterial properties are shown to be controlled by alkyl chain length, with the highest activity demonstrated by surfactants with decyl tail, with the length of the spacer fragment showing practically no effect. The results indicate that the mechanism of cytotoxic effect of the compounds can be associated with the induction of apoptosis via the mitochondrial pathway. GENERAL SIGNIFICANCE: Selectivity against pathogenic microorganisms and low toxicity against eukaryotic cells allow considering dicationic imidazolium surfactants as new effective antimicrobial agents. At the same time, high selectivity against some cancer cell lines indicates the prospect of their using as components of new anticancer drugs.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Imidazoles/pharmacology , Surface-Active Agents/pharmacology , Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Bacteria/drug effects , Bacterial Infections/drug therapy , Cell Line , Cell Line, Tumor , Fungi/drug effects , Gram-Positive Bacteria/drug effects , Humans , Imidazoles/chemistry , Microbial Sensitivity Tests , Mycoses/drug therapy , Neoplasms/drug therapy , Structure-Activity Relationship , Surface-Active Agents/chemistry
16.
Int J Pharm ; 587: 119640, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32673770

ABSTRACT

Hydroxyethyl bearing gemini surfactants, alkanediyl-α,ω-bis(N-hexadecyl-N-2-hydroxyethyl-N-methylammonium bromide), 16-s-16(OH), were used to augment phosphatidylcholine based liposomes to achieve higher stability and enhanced cellular uptake and penetration. The developed liposomes were loaded with rhodamine B, doxorubicin hydrochloride, pralidoxime chloride to investigate release properties, cytotoxicity in vitro, as well as ability to cross the blood-brain barrier. At molar ratio of 35:1 (lipid:surfactant) the formulation was found to be of low toxicity, stable for two months, and able to deliver rhodamine B beyond the blood-brain barrier in rats. In vivo, pharmacokinetics of free and formulated 2-PAM in plasma and brain were evaluated, liposomal 2-PAM was found to reactivate 27% of brain acetylcholinesterase, which is, to our knowledge, the first example of such high degree of reactivation after intravenous administration of liposomal drug.


Subject(s)
Drug Delivery Systems , Liposomes , Animals , Cations , Doxorubicin , Rats , Surface-Active Agents
17.
Nanoscale ; 12(25): 13757-13770, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32573587

ABSTRACT

New lipid-based nanomaterials and multi-target directed ligands (MTDLs) based on sterically hindered phenol, containing a quaternary ammonium moiety (SHP-s-R, with s = 2,3) of varying hydrophobicity (R = CH2Ph and CnH2n+1, with n = 8, 10, 12, 16), have been prepared as potential drugs against Alzheimer's disease (AD). SHP-s-R are inhibitors of human cholinesterases with antioxidant properties. The inhibitory potency of SHP-s-R and selectivity ratio of cholinesterase inhibition were found to significantly depend on the length of the methylene spacer (s) and alkyl chain length. The compound SHP-2-16 showed the best IC50 for human AChE and the highest selectivity, being 30-fold more potent than for human BChE. Molecular modeling of SHP-2-16 binding to human AChE suggests that this compound is a dual binding site inhibitor that interacts with both the peripheral anionic site and catalytic active site. The relationship between self-assembly parameters (CMC, solubilization capacity, aggregation number), antioxidant activity and a toxicological parameter (hemolytic action on human red blood cells) was investigated. Two sterically hindered phenols (SHP-2-Bn and SHP-2-R) were loaded into L-α-phosphatidylcholine (PC) nanoparticles by varying the SHP alkyl chain length. For the brain AChE inhibition assay, PC/SHP-2-Bn/SHP-2-16 nanoparticles were administered to rats intranasally at a dose of 8 mg kg-1. The Morris water maze experiment showed that scopolamine-induced AD-like dementia in rats treated with PC/SHP-2-Bn/SHP-2-16 nanoparticles was significantly reduced. This is the first example of cationic SHP-phospholipid nanoparticles for inhibition of brain cholinesterases realized by the use of intranasal administration. This route has promising potential for the treatment of AD.


Subject(s)
Alzheimer Disease , Administration, Intranasal , Alzheimer Disease/drug therapy , Animals , Cholinesterase Inhibitors/pharmacology , Lipids/therapeutic use , Phenol/therapeutic use , Phenols , Rats , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 30(13): 127234, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32386856

ABSTRACT

Here we report the synthesis and biological evaluation of a series of new 2-hydroxybenzylphosphonium salts (QPS) with antimicrobial and antitumor dual action. The most active compounds exhibit antimicrobial activity at a micromolar level against Gram-positive bacteria Sa (ATCC 209p and clinical isolates), Bc (1-2 µM) and fungi Tm and Ca, and induced no notable hemolysis at MIC. The change in nature of substituents of the same length led to a drastic change of biological activity. Self-assembly behavior of the octadecyl and oleyl derivatives was studied. QPS demonstrated self-assembly within the micromolar range with the formation of nanosized aggregates capable of the solubilizing hydrophobic probe. The synthesized phosphonium salts were tested for cytotoxicity. The most potent salt was active against on M-Hela cell line with IC50 on the level of doxorubicin and good selectivity. According to the cytofluorimetry analysis, the salts induced mitochondria-dependent apoptosis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Organophosphorus Compounds/pharmacology , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Arthrodermataceae/drug effects , Bacillus cereus/drug effects , Candida albicans/drug effects , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Organophosphorus Compounds/chemical synthesis , Staphylococcus aureus/drug effects
19.
Mol Pharm ; 17(1): 40-49, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31746611

ABSTRACT

The addition of specific chemical groups in a macrocycle structure influences its functional properties and, consequently, can provide new possibilities, among which are aggregation properties, water solubility, biocompatibility, stimuli response, biological activity, etc. Herein, we report synthesis of new resorcin[4]arene with N-methyl-d-glucamine groups on the upper rim and n-decyl chains on the lower rim, an investigation of its self-assembly behavior in aqueous media, and its use as a building block for the formation of drug nanocontainer. N-methyl-d-glucamine fragments in the resorcin[4]arene structure promote higher stability in solutions, simplification of self-aggregation, and increased biological activity. Antimicrobial and hemolytic activity assessment revealed that this resorcin[4]arene obtained is nontoxic. The study of cell penetration was carried out with both free and encapsulated doxorubicin (DOX). Surprisingly, DOX-loaded macrocycle aggregates are more efficient in causing apoptosis in human cancer cell line. Conceivably, this knowledge will help in the rational design of DOX combination for novel drug-administration strategies in cancer treatment.


Subject(s)
Apoptosis/drug effects , Calixarenes/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Antibiotics, Antineoplastic/administration & dosage , Calixarenes/chemical synthesis , Cell Line, Tumor , Doxorubicin/administration & dosage , Hepatocytes/drug effects , Humans , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Solubility
20.
J Mater Chem B ; 7(46): 7351-7362, 2019 12 14.
Article in English | MEDLINE | ID: mdl-31696196

ABSTRACT

The purpose of this work was to obtain cationic liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine noncovalently modified using alkyltriphenylphosphonium bromides (TPPB-n) with different lengths of hydrocarbon tail for targeted delivery to mitochondria. The hydrodynamic diameter and electrokinetic potential of hybrid liposomes depending on the lipid/surfactant ratio were monitored in time with the aim to optimize the composition with sufficient stability and positive charge for mitochondria-targeted delivery. It was found that increasing the alkyl tail length of the surfactant (up to TPPB-14) leads to an increase in the positive charge of the liposomes. The most optimal results of stability were obtained for hybrid liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and TPPB-12, TPPB-14. The obtained modified liposomes were loaded with hydrophilic substrates (a model probe Rhodamine B and medicines metronidazole and doxorubicin). This is one of the first examples of fabrication of liposomes noncovalently modified using an amphiphilic TPP cation, with the alkyl tail length of surfactant and TPP/lipid ratio optimized in terms of stability of the liposomes and the binding/release behavior of hydrophilic probes. Using the confocal microscopy method, it was shown that modification of liposomes with a triphenylphosphonium cation results in targeted delivery of encapsulated compounds to mitochondria.


Subject(s)
Bromides/chemistry , Cations/chemistry , Liposomes/chemistry , Mitochondria/metabolism , Antineoplastic Agents/pharmacology , Benzopyrans/chemistry , Cell Line, Tumor , Drug Carriers , Drug Screening Assays, Antitumor , Hemolysis , Humans , Hydrodynamics , Lipids/chemistry , Liver/drug effects , Metronidazole/chemistry , Microscopy, Confocal , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Rhodamines/chemistry , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...